| dsphdr |
|
Table of contents
Procedure
DSPHDR ( Derivative of spherical w.r.t. rectangular )
SUBROUTINE DSPHDR ( X, Y, Z, JACOBI )
Abstract
Compute the Jacobian matrix of the transformation from
rectangular to spherical coordinates.
Required_Reading
None.
Keywords
COORDINATES
DERIVATIVES
MATRIX
Declarations
IMPLICIT NONE
DOUBLE PRECISION X
DOUBLE PRECISION Y
DOUBLE PRECISION Z
DOUBLE PRECISION JACOBI ( 3, 3 )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
X I X-coordinate of point.
Y I Y-coordinate of point.
Z I Z-coordinate of point.
JACOBI O Matrix of partial derivatives.
Detailed_Input
X,
Y,
Z are the rectangular coordinates of the point at
which the Jacobian of the map from rectangular
to spherical coordinates is desired.
Detailed_Output
JACOBI is the matrix of partial derivatives of the conversion
between rectangular and spherical coordinates. It
has the form
.- -.
| DR/DX DR/DY DR/DZ |
| DCOLAT/DX DCOLAT/DY DCOLAT/DZ |
| DLONG/DX DLONG/DY DLONG/DZ |
`- -'
evaluated at the input values of X, Y, and Z.
Parameters
None.
Exceptions
1) If the input point is on the Z-axis (X and Y = 0), the
Jacobian is undefined, the error SPICE(POINTONZAXIS) is
signaled.
Files
None.
Particulars
When performing vector calculations with velocities it is
usually most convenient to work in rectangular coordinates.
However, once the vector manipulations have been performed
it is often desirable to convert the rectangular representations
into spherical coordinates to gain insights about phenomena
in this coordinate frame.
To transform rectangular velocities to derivatives of coordinates
in a spherical system, one uses the Jacobian of the
transformation between the two systems.
Given a state in rectangular coordinates
( x, y, z, dx, dy, dz )
the corresponding spherical coordinate derivatives are given by
the matrix equation:
t | t
(dr, dcolat, dlong) = JACOBI| * (dx, dy, dz)
|(x,y,z)
This routine computes the matrix
|
JACOBI|
|(x, y, z)
Examples
The numerical results shown for this example may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Find the spherical state of the Earth as seen from
Mars in the IAU_MARS reference frame at January 1, 2005 TDB.
Map this state back to rectangular coordinates as a check.
Use the meta-kernel shown below to load the required SPICE
kernels.
KPL/MK
File name: dsphdr_ex1.tm
This meta-kernel is intended to support operation of SPICE
example programs. The kernels shown here should not be
assumed to contain adequate or correct versions of data
required by SPICE-based user applications.
In order for an application to use this meta-kernel, the
kernels referenced here must be present in the user's
current working directory.
The names and contents of the kernels referenced
by this meta-kernel are as follows:
File name Contents
--------- --------
de421.bsp Planetary ephemeris
pck00010.tpc Planet orientation and
radii
naif0009.tls Leapseconds
\begindata
KERNELS_TO_LOAD = ( 'de421.bsp',
'pck00010.tpc',
'naif0009.tls' )
\begintext
End of meta-kernel
Example code begins here.
PROGRAM DSPHDR_EX1
IMPLICIT NONE
C
C SPICELIB functions
C
DOUBLE PRECISION RPD
C
C Local parameters
C
CHARACTER*(*) FMT1
PARAMETER ( FMT1 = '(A,E18.8)' )
C
C Local variables
C
DOUBLE PRECISION COLAT
DOUBLE PRECISION DRECTN ( 3 )
DOUBLE PRECISION ET
DOUBLE PRECISION JACOBI ( 3, 3 )
DOUBLE PRECISION LT
DOUBLE PRECISION SPHVEL ( 3 )
DOUBLE PRECISION RECTAN ( 3 )
DOUBLE PRECISION R
DOUBLE PRECISION SLON
DOUBLE PRECISION STATE ( 6 )
C
C Load SPK, PCK and LSK kernels, use a meta kernel for
C convenience.
C
CALL FURNSH ( 'dsphdr_ex1.tm' )
C
C Look up the apparent state of earth as seen from Mars at
C January 1, 2005 TDB, relative to the IAU_MARS reference
C frame.
C
CALL STR2ET ( 'January 1, 2005 TDB', ET )
CALL SPKEZR ( 'Earth', ET, 'IAU_MARS', 'LT+S',
. 'Mars', STATE, LT )
C
C Convert position to spherical coordinates.
C
CALL RECSPH ( STATE, R, COLAT, SLON )
C
C Convert velocity to spherical coordinates.
C
CALL DSPHDR ( STATE(1), STATE(2), STATE(3), JACOBI )
CALL MXV ( JACOBI, STATE(4), SPHVEL )
C
C As a check, convert the spherical state back to
C rectangular coordinates.
C
CALL SPHREC ( R, COLAT, SLON, RECTAN )
CALL DRDSPH ( R, COLAT, SLON, JACOBI )
CALL MXV ( JACOBI, SPHVEL, DRECTN )
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular coordinates:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' X (km) = ', STATE(1)
WRITE(*,FMT1) ' Y (km) = ', STATE(2)
WRITE(*,FMT1) ' Z (km) = ', STATE(3)
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular velocity:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' dX/dt (km/s) = ', STATE(4)
WRITE(*,FMT1) ' dY/dt (km/s) = ', STATE(5)
WRITE(*,FMT1) ' dZ/dt (km/s) = ', STATE(6)
WRITE(*,*) ' '
WRITE(*,*) 'Spherical coordinates:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' Radius (km) = ', R
WRITE(*,FMT1) ' Colatitude (deg) = ',
. COLAT/RPD()
WRITE(*,FMT1) ' Longitude (deg) = ', SLON/RPD()
WRITE(*,*) ' '
WRITE(*,*) 'Spherical velocity:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' d Radius/dt (km/s) = ', SPHVEL(1)
WRITE(*,FMT1) ' d Colatitude/dt (deg/s) = ',
. SPHVEL(2)/RPD()
WRITE(*,FMT1) ' d Longitude/dt (deg/s) = ',
. SPHVEL(3)/RPD()
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular coordinates from inverse ' //
. 'mapping:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' X (km) = ', RECTAN(1)
WRITE(*,FMT1) ' Y (km) = ', RECTAN(2)
WRITE(*,FMT1) ' Z (km) = ', RECTAN(3)
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular velocity from inverse mapping:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' dX/dt (km/s) = ', DRECTN(1)
WRITE(*,FMT1) ' dY/dt (km/s) = ', DRECTN(2)
WRITE(*,FMT1) ' dZ/dt (km/s) = ', DRECTN(3)
WRITE(*,*) ' '
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
Rectangular coordinates:
X (km) = -0.76096183E+08
Y (km) = 0.32436380E+09
Z (km) = 0.47470484E+08
Rectangular velocity:
dX/dt (km/s) = 0.22952075E+05
dY/dt (km/s) = 0.53760111E+04
dZ/dt (km/s) = -0.20881149E+02
Spherical coordinates:
Radius (km) = 0.33653522E+09
Colatitude (deg) = 0.81891013E+02
Longitude (deg) = 0.10320290E+03
Spherical velocity:
d Radius/dt (km/s) = -0.11211601E+02
d Colatitude/dt (deg/s) = 0.33189930E-05
d Longitude/dt (deg/s) = -0.40539288E-02
Rectangular coordinates from inverse mapping:
X (km) = -0.76096183E+08
Y (km) = 0.32436380E+09
Z (km) = 0.47470484E+08
Rectangular velocity from inverse mapping:
dX/dt (km/s) = 0.22952075E+05
dY/dt (km/s) = 0.53760111E+04
dZ/dt (km/s) = -0.20881149E+02
Restrictions
None.
Literature_References
None.
Author_and_Institution
J. Diaz del Rio (ODC Space)
W.L. Taber (JPL)
Version
SPICELIB Version 1.0.1, 26-OCT-2021 (JDR)
Edited the header to comply with NAIF standard.
Added complete code example.
SPICELIB Version 1.0.0, 19-JUL-2001 (WLT)
|
Fri Dec 31 18:36:16 2021