| drdsph |
|
Table of contents
Procedure
DRDSPH ( Derivative of rectangular w.r.t. spherical )
SUBROUTINE DRDSPH ( R, COLAT, SLON, JACOBI )
Abstract
Compute the Jacobian matrix of the transformation from spherical
to rectangular coordinates.
Required_Reading
None.
Keywords
COORDINATES
DERIVATIVES
MATRIX
Declarations
IMPLICIT NONE
DOUBLE PRECISION R
DOUBLE PRECISION COLAT
DOUBLE PRECISION SLON
DOUBLE PRECISION JACOBI ( 3, 3 )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
R I Distance of a point from the origin.
COLAT I Angle of the point from the positive Z-axis.
SLON I Angle of the point from the XY plane.
JACOBI O Matrix of partial derivatives.
Detailed_Input
R is the distance of a point from the origin.
COLAT is the angle between the point and the positive
Z-axis, in radians.
SLON is the angle of the point from the XZ plane in
radians. The angle increases in the counterclockwise
sense about the +Z axis.
Detailed_Output
JACOBI is the matrix of partial derivatives of the conversion
between spherical and rectangular coordinates,
evaluated at the input coordinates. This matrix has
the form
.- -.
| DX/DR DX/DCOLAT DX/DSLON |
| |
| DY/DR DY/DCOLAT DY/DSLON |
| |
| DZ/DR DZ/DCOLAT DZ/DSLON |
`- -'
evaluated at the input values of R, SLON and LAT.
Here X, Y, and Z are given by the familiar formulae
X = R*COS(SLON)*SIN(COLAT)
Y = R*SIN(SLON)*SIN(COLAT)
Z = R*COS(COLAT)
Parameters
None.
Exceptions
Error free.
Files
None.
Particulars
It is often convenient to describe the motion of an object in
the spherical coordinate system. However, when performing
vector computations its hard to beat rectangular coordinates.
To transform states given with respect to spherical coordinates
to states with respect to rectangular coordinates, one makes use
of the Jacobian of the transformation between the two systems.
Given a state in spherical coordinates
( r, colat, slon, dr, dcolat, dslon )
the velocity in rectangular coordinates is given by the matrix
equation:
t | t
(dx, dy, dz) = JACOBI| * (dr, dcolat, dslon)
|(r,colat,slon)
This routine computes the matrix
|
JACOBI|
|(r,colat,slon)
Examples
The numerical results shown for this example may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Find the spherical state of the Earth as seen from
Mars in the IAU_MARS reference frame at January 1, 2005 TDB.
Map this state back to rectangular coordinates as a check.
Use the meta-kernel shown below to load the required SPICE
kernels.
KPL/MK
File name: drdsph_ex1.tm
This meta-kernel is intended to support operation of SPICE
example programs. The kernels shown here should not be
assumed to contain adequate or correct versions of data
required by SPICE-based user applications.
In order for an application to use this meta-kernel, the
kernels referenced here must be present in the user's
current working directory.
The names and contents of the kernels referenced
by this meta-kernel are as follows:
File name Contents
--------- --------
de421.bsp Planetary ephemeris
pck00010.tpc Planet orientation and
radii
naif0009.tls Leapseconds
\begindata
KERNELS_TO_LOAD = ( 'de421.bsp',
'pck00010.tpc',
'naif0009.tls' )
\begintext
End of meta-kernel
Example code begins here.
PROGRAM DRDSPH_EX1
IMPLICIT NONE
C
C SPICELIB functions
C
DOUBLE PRECISION RPD
C
C Local parameters
C
CHARACTER*(*) FMT1
PARAMETER ( FMT1 = '(A,E18.8)' )
C
C Local variables
C
DOUBLE PRECISION COLAT
DOUBLE PRECISION DRECTN ( 3 )
DOUBLE PRECISION ET
DOUBLE PRECISION JACOBI ( 3, 3 )
DOUBLE PRECISION LT
DOUBLE PRECISION SPHVEL ( 3 )
DOUBLE PRECISION RECTAN ( 3 )
DOUBLE PRECISION R
DOUBLE PRECISION SLON
DOUBLE PRECISION STATE ( 6 )
C
C Load SPK, PCK and LSK kernels, use a meta kernel for
C convenience.
C
CALL FURNSH ( 'drdsph_ex1.tm' )
C
C Look up the apparent state of earth as seen from Mars at
C January 1, 2005 TDB, relative to the IAU_MARS reference
C frame.
C
CALL STR2ET ( 'January 1, 2005 TDB', ET )
CALL SPKEZR ( 'Earth', ET, 'IAU_MARS', 'LT+S',
. 'Mars', STATE, LT )
C
C Convert position to spherical coordinates.
C
CALL RECSPH ( STATE, R, COLAT, SLON )
C
C Convert velocity to spherical coordinates.
C
CALL DSPHDR ( STATE(1), STATE(2), STATE(3), JACOBI )
CALL MXV ( JACOBI, STATE(4), SPHVEL )
C
C As a check, convert the spherical state back to
C rectangular coordinates.
C
CALL SPHREC ( R, COLAT, SLON, RECTAN )
CALL DRDSPH ( R, COLAT, SLON, JACOBI )
CALL MXV ( JACOBI, SPHVEL, DRECTN )
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular coordinates:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' X (km) = ', STATE(1)
WRITE(*,FMT1) ' Y (km) = ', STATE(2)
WRITE(*,FMT1) ' Z (km) = ', STATE(3)
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular velocity:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' dX/dt (km/s) = ', STATE(4)
WRITE(*,FMT1) ' dY/dt (km/s) = ', STATE(5)
WRITE(*,FMT1) ' dZ/dt (km/s) = ', STATE(6)
WRITE(*,*) ' '
WRITE(*,*) 'Spherical coordinates:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' Radius (km) = ', R
WRITE(*,FMT1) ' Colatitude (deg) = ',
. COLAT/RPD()
WRITE(*,FMT1) ' Longitude (deg) = ', SLON/RPD()
WRITE(*,*) ' '
WRITE(*,*) 'Spherical velocity:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' d Radius/dt (km/s) = ', SPHVEL(1)
WRITE(*,FMT1) ' d Colatitude/dt (deg/s) = ',
. SPHVEL(2)/RPD()
WRITE(*,FMT1) ' d Longitude/dt (deg/s) = ',
. SPHVEL(3)/RPD()
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular coordinates from inverse ' //
. 'mapping:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' X (km) = ', RECTAN(1)
WRITE(*,FMT1) ' Y (km) = ', RECTAN(2)
WRITE(*,FMT1) ' Z (km) = ', RECTAN(3)
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular velocity from inverse mapping:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' dX/dt (km/s) = ', DRECTN(1)
WRITE(*,FMT1) ' dY/dt (km/s) = ', DRECTN(2)
WRITE(*,FMT1) ' dZ/dt (km/s) = ', DRECTN(3)
WRITE(*,*) ' '
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
Rectangular coordinates:
X (km) = -0.76096183E+08
Y (km) = 0.32436380E+09
Z (km) = 0.47470484E+08
Rectangular velocity:
dX/dt (km/s) = 0.22952075E+05
dY/dt (km/s) = 0.53760111E+04
dZ/dt (km/s) = -0.20881149E+02
Spherical coordinates:
Radius (km) = 0.33653522E+09
Colatitude (deg) = 0.81891013E+02
Longitude (deg) = 0.10320290E+03
Spherical velocity:
d Radius/dt (km/s) = -0.11211601E+02
d Colatitude/dt (deg/s) = 0.33189930E-05
d Longitude/dt (deg/s) = -0.40539288E-02
Rectangular coordinates from inverse mapping:
X (km) = -0.76096183E+08
Y (km) = 0.32436380E+09
Z (km) = 0.47470484E+08
Rectangular velocity from inverse mapping:
dX/dt (km/s) = 0.22952075E+05
dY/dt (km/s) = 0.53760111E+04
dZ/dt (km/s) = -0.20881149E+02
Restrictions
None.
Literature_References
None.
Author_and_Institution
J. Diaz del Rio (ODC Space)
W.L. Taber (JPL)
I.M. Underwood (JPL)
Version
SPICELIB Version 1.1.0, 26-OCT-2021 (JDR)
Edited the header to comply with NAIF standard.
Added complete code example.
Changed the argument name LONG to SLON for consistency with
other routines.
SPICELIB Version 1.0.0, 20-JUL-2001 (WLT) (IMU)
|
Fri Dec 31 18:36:14 2021