Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
recsph

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     RECSPH ( Rectangular to spherical coordinates )

     SUBROUTINE RECSPH ( RECTAN, R, COLAT, SLON  )

Abstract

     Convert from rectangular coordinates to spherical coordinates.

Required_Reading

     None.

Keywords

     CONVERSION
     COORDINATES

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION   RECTAN ( 3 )
     DOUBLE PRECISION   R
     DOUBLE PRECISION   COLAT
     DOUBLE PRECISION   SLON

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     RECTAN     I   Rectangular coordinates of a point.
     R          O   Distance of the point from the origin.
     COLAT      O   Angle of the point from the Z-axis (radians)
     SLON       O   Longitude of the point (radians).

Detailed_Input

     RECTAN   are the rectangular coordinates of a point.

Detailed_Output

     R        is the distance of the point from the origin.

     COLAT    is the angle between the point and the positive Z-axis in
              radians. The range of COLAT is [0, pi].

     SLON     is the longitude of the point in radians. This is the
              angle between the positive X-axis and the orthogonal
              projection of the point onto the XY plane. SLON increases
              in the counterclockwise sense about the positive Z-axis.
              The range of SLON is [-pi, pi].

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     This routine returns the spherical coordinates of a point
     whose position is input in rectangular coordinates.

     Spherical coordinates are defined by a distance from a central
     reference point, an angle from a reference meridian, and an angle
     from the z-axis.

Examples

     The numerical results shown for these examples may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Compute the spherical coordinates of the position of the Moon
        as seen from the Earth, and convert them to rectangular
        coordinates.

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: recsph_ex1.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                     Contents
              ---------                     --------
              de421.bsp                     Planetary ephemeris
              naif0012.tls                  Leapseconds


           \begindata

              KERNELS_TO_LOAD = ( 'de421.bsp',
                                  'naif0012.tls'  )

           \begintext

           End of meta-kernel


        Example code begins here.


              PROGRAM RECSPH_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1 = '(A,F20.8)' )

        C
        C     Local variables
        C
              DOUBLE PRECISION      CLON
              DOUBLE PRECISION      COLAT
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      POS    ( 3 )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      RECTAN ( 3 )
              DOUBLE PRECISION      SLON
              DOUBLE PRECISION      Z

        C
        C     Load SPK and LSK kernels, use a meta kernel for
        C     convenience.
        C
              CALL FURNSH ( 'recsph_ex1.tm' )

        C
        C     Look up the geometric state of the Moon as seen from
        C     the Earth at 2017 Mar 20, relative to the J2000
        C     reference frame.
        C
              CALL STR2ET ( '2017 Mar 20', ET )

              CALL SPKPOS ( 'Moon',  ET,  'J2000', 'NONE',
             .              'Earth', POS, LT               )

        C
        C     Convert the position vector POS to spherical
        C     coordinates.
        C
              CALL RECSPH ( POS, RADIUS, COLAT, SLON )

        C
        C     Convert the spherical coordinates to rectangular.
        C
              CALL SPHREC ( RADIUS, COLAT, SLON, RECTAN )


              WRITE(*,*) ' '
              WRITE(*,*) 'Original rectangular coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X           (km): ', POS(1)
              WRITE(*,FMT1) '  Y           (km): ', POS(2)
              WRITE(*,FMT1) '  Z           (km): ', POS(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Spherical coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius      (km): ', RADIUS
              WRITE(*,FMT1) '  Colatitude (deg): ', COLAT*DPR()
              WRITE(*,FMT1) '  Longitude  (deg): ', SLON*DPR()
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates from SPHREC:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X           (km): ', RECTAN(1)
              WRITE(*,FMT1) '  Y           (km): ', RECTAN(2)
              WRITE(*,FMT1) '  Z           (km): ', RECTAN(3)
              WRITE(*,*) ' '

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Original rectangular coordinates:

          X           (km):      -55658.44323296
          Y           (km):     -379226.32931475
          Z           (km):     -126505.93063865

         Spherical coordinates:

          Radius      (km):      403626.33912495
          Colatitude (deg):         108.26566077
          Longitude  (deg):         -98.34959789

         Rectangular coordinates from SPHREC:

          X           (km):      -55658.44323296
          Y           (km):     -379226.32931475
          Z           (km):     -126505.93063865


     2) Create a table showing a variety of rectangular coordinates
        and the corresponding spherical coordinates.

        Corresponding rectangular and spherical coordinates are
        listed to three decimal places. Output angles in degrees.


        Example code begins here.


              PROGRAM RECSPH_EX2
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters.
        C
              INTEGER               NREC
              PARAMETER           ( NREC = 11 )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      COLAT
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      RECTAN ( 3, NREC )
              DOUBLE PRECISION      SLON

              INTEGER               I
              INTEGER               J

        C
        C     Define the input rectangular coordinates.
        C
              DATA                 RECTAN /
             .                  0.D0,         0.D0,         0.D0,
             .                  1.D0,         0.D0,         0.D0,
             .                  0.D0,         1.D0,         0.D0,
             .                  0.D0,         0.D0,         1.D0,
             .                 -1.D0,         0.D0,         0.D0,
             .                  0.D0,        -1.D0,         0.D0,
             .                  0.D0,         0.D0,        -1.D0,
             .                  1.D0,         1.D0,         0.D0,
             .                  1.D0,         0.D0,         1.D0,
             .                  0.D0,         1.D0,         1.D0,
             .                  1.D0,         1.D0,         1.D0  /

        C
        C     Print the banner.
        C
              WRITE(*,*) ' RECT(1)  RECT(2)  RECT(3) '
             . //        '  RADIUS   COLAT     SLON  '
              WRITE(*,*) ' -------  -------  ------- '
             . //        ' -------  -------  ------- '

        C
        C     Do the conversion. Output angles in degrees.
        C
              DO I = 1, NREC

                 CALL RECSPH( RECTAN(1,I), RADIUS, COLAT, SLON )

                 WRITE (*,'(6F9.3)') ( RECTAN(J,I), J=1,3 ),
             .                        RADIUS, COLAT * DPR(),
             .                                SLON  * DPR()

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


          RECT(1)  RECT(2)  RECT(3)   RADIUS   COLAT     SLON
          -------  -------  -------  -------  -------  -------
            0.000    0.000    0.000    0.000    0.000    0.000
            1.000    0.000    0.000    1.000   90.000    0.000
            0.000    1.000    0.000    1.000   90.000   90.000
            0.000    0.000    1.000    1.000    0.000    0.000
           -1.000    0.000    0.000    1.000   90.000  180.000
            0.000   -1.000    0.000    1.000   90.000  -90.000
            0.000    0.000   -1.000    1.000  180.000    0.000
            1.000    1.000    0.000    1.414   90.000   45.000
            1.000    0.000    1.000    1.414   45.000    0.000
            0.000    1.000    1.000    1.414   45.000   90.000
            1.000    1.000    1.000    1.732   54.736   45.000

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     N.J. Bachman       (JPL)
     J. Diaz del Rio    (ODC Space)
     B.V. Semenov       (JPL)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 06-JUL-2021 (JDR)

        Changed the argument name LONG to SLON for consistency with
        other routines.

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Added complete
        code examples. Removed unnecessary $Revisions section.

    SPICELIB Version 1.0.3, 26-JUL-2016 (BVS)

        Minor headers edits.

    SPICELIB Version 1.0.2, 07-JAN-2002 (NJB)

        Fixed description of SLON in $Brief_I/O and Detailed_I/O
        header sections.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT)
Fri Dec 31 18:36:42 2021