Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
sphrec

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     SPHREC ( Spherical to rectangular coordinates )

     SUBROUTINE SPHREC ( R, COLAT, SLON, RECTAN  )

Abstract

     Convert from spherical coordinates to rectangular coordinates.

Required_Reading

     None.

Keywords

     CONVERSION
     COORDINATES

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION   R
     DOUBLE PRECISION   COLAT
     DOUBLE PRECISION   SLON
     DOUBLE PRECISION   RECTAN ( 3 )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     R          I   Distance of a point from the origin.
     COLAT      I   Angle of the point from the Z-axis in radians.
     SLON       I   Angle of the point from the XZ plane in radians.
     RECTAN     O   Rectangular coordinates of the point.

Detailed_Input

     R        is the distance of the point from the origin.

     COLAT    is the angle between the point and the positive
              Z-axis in radians.

     SLON     is the angle of the projection of the point to the
              XY plane from the positive X-axis in radians. The
              positive Y-axis is at longitude PI/2 radians.

Detailed_Output

     RECTAN   are the rectangular coordinates of a point.

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     This routine returns the rectangular coordinates of a point
     whose position is input in spherical coordinates.

     Spherical coordinates are defined by a distance from a central
     reference point, an angle from a reference meridian, and an angle
     from the Z-axis. The co-latitude of the positive Z-axis is
     zero. The longitude of the positive Y-axis is PI/2 radians.

Examples

     The numerical results shown for these examples may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Compute the spherical coordinates of the position of the Moon
        as seen from the Earth, and convert them to rectangular
        coordinates.

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: sphrec_ex1.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                     Contents
              ---------                     --------
              de421.bsp                     Planetary ephemeris
              naif0012.tls                  Leapseconds


           \begindata

              KERNELS_TO_LOAD = ( 'de421.bsp',
                                  'naif0012.tls'  )

           \begintext

           End of meta-kernel


        Example code begins here.


              PROGRAM SPHREC_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1 = '(A,F20.8)' )

        C
        C     Local variables
        C
              DOUBLE PRECISION      CLON
              DOUBLE PRECISION      COLAT
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      POS    ( 3 )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      RECTAN ( 3 )
              DOUBLE PRECISION      SLON
              DOUBLE PRECISION      Z

        C
        C     Load SPK and LSK kernels, use a meta kernel for
        C     convenience.
        C
              CALL FURNSH ( 'sphrec_ex1.tm' )

        C
        C     Look up the geometric state of the Moon as seen from
        C     the Earth at 2017 Mar 20, relative to the J2000
        C     reference frame.
        C
              CALL STR2ET ( '2017 Mar 20', ET )

              CALL SPKPOS ( 'Moon',  ET,  'J2000', 'NONE',
             .              'Earth', POS, LT               )

        C
        C     Convert the position vector POS to spherical
        C     coordinates.
        C
              CALL RECSPH ( POS, RADIUS, COLAT, SLON )

        C
        C     Convert the spherical coordinates to rectangular.
        C
              CALL SPHREC ( RADIUS, COLAT, SLON, RECTAN )


              WRITE(*,*) ' '
              WRITE(*,*) 'Original rectangular coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X           (km): ', POS(1)
              WRITE(*,FMT1) '  Y           (km): ', POS(2)
              WRITE(*,FMT1) '  Z           (km): ', POS(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Spherical coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius      (km): ', RADIUS
              WRITE(*,FMT1) '  Colatitude (deg): ', COLAT*DPR()
              WRITE(*,FMT1) '  Longitude  (deg): ', SLON*DPR()
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates from SPHREC:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X           (km): ', RECTAN(1)
              WRITE(*,FMT1) '  Y           (km): ', RECTAN(2)
              WRITE(*,FMT1) '  Z           (km): ', RECTAN(3)
              WRITE(*,*) ' '

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Original rectangular coordinates:

          X           (km):      -55658.44323296
          Y           (km):     -379226.32931475
          Z           (km):     -126505.93063865

         Spherical coordinates:

          Radius      (km):      403626.33912495
          Colatitude (deg):         108.26566077
          Longitude  (deg):         -98.34959789

         Rectangular coordinates from SPHREC:

          X           (km):      -55658.44323296
          Y           (km):     -379226.32931475
          Z           (km):     -126505.93063865


     2) Create a table showing a variety of spherical coordinates
        and the corresponding rectangular coordinates.

        Corresponding spherical and rectangular coordinates are
        listed to three decimal places. Input angles are in degrees.


        Example code begins here.


              PROGRAM SPHREC_EX2
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR
              DOUBLE PRECISION      RPD

        C
        C     Local parameters.
        C
              INTEGER               NREC
              PARAMETER           ( NREC = 11 )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      COLAT  ( NREC )
              DOUBLE PRECISION      RADIUS ( NREC )
              DOUBLE PRECISION      RCOLAT
              DOUBLE PRECISION      RSLON
              DOUBLE PRECISION      SLON   ( NREC )
              DOUBLE PRECISION      RECTAN ( 3    )

              INTEGER               I

        C
        C     Define the input spherical coordinates. Angles in
        C     degrees.
        C
              DATA                 RADIUS / 0.D0, 1.D0,         1.D0,
             .                              1.D0, 1.D0,         1.D0,
             .                              1.D0, 1.4142D0, 1.4142D0,
             .                          1.4142D0, 1.7320D0           /

              DATA                 COLAT /  0.D0,   90.D0,  90.D0,
             .                              0.D0,   90.D0,  90.D0,
             .                            180.D0,   90.D0,  45.D0,
             .                             45.D0,   54.7356D0        /

              DATA                 SLON  /  0.D0,    0.D0,  90.D0,
             .                              0.D0,  180.D0, -90.D0,
             .                              0.D0,   45.D0,   0.D0,
             .                              90.D0,  45.D0            /

        C
        C     Print the banner.
        C
              WRITE(*,*) '  RADIUS   COLAT     SLON  '
             . //        ' RECT(1)  RECT(2)  RECT(3) '
              WRITE(*,*) ' -------  -------  ------- '
             . //        ' -------  -------  ------- '

        C
        C     Do the conversion.
        C
              DO I = 1, NREC

                 RCOLAT = COLAT(I) * RPD()
                 RSLON  = SLON(I)  * RPD()

                 CALL SPHREC( RADIUS(I), RCOLAT, RSLON, RECTAN )

                 WRITE (*,'(6F9.3)') RADIUS(I), COLAT(I), SLON(I),
             .                       RECTAN

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


           RADIUS   COLAT     SLON   RECT(1)  RECT(2)  RECT(3)
          -------  -------  -------  -------  -------  -------
            0.000    0.000    0.000    0.000    0.000    0.000
            1.000   90.000    0.000    1.000    0.000    0.000
            1.000   90.000   90.000    0.000    1.000    0.000
            1.000    0.000    0.000    0.000    0.000    1.000
            1.000   90.000  180.000   -1.000    0.000    0.000
            1.000   90.000  -90.000    0.000   -1.000    0.000
            1.000  180.000    0.000    0.000    0.000   -1.000
            1.414   90.000   45.000    1.000    1.000    0.000
            1.414   45.000    0.000    1.000    0.000    1.000
            1.414   45.000   90.000    0.000    1.000    1.000
            1.732   54.736   45.000    1.000    1.000    1.000

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     B.V. Semenov       (JPL)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 13-AUG-2021 (JDR)

        Changed the argument name LONG to SLON for consistency with
        other routines.

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Removed
        unnecessary $Revisions section. Added complete code examples.

    SPICELIB Version 1.0.4, 26-JUL-2016 (BVS)

        Minor headers edits.

    SPICELIB Version 1.0.3, 24-SEP-1997 (WLT)

        The BRIEF I/O section was corrected so that it
        correctly reflects the inputs and outputs.

    SPICELIB Version 1.0.2, 12-JUL-1995 (WLT)

        The header documentation was corrected so that longitude
        now is correctly described as the angle from the
        XZ plane instead of XY.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT)
Fri Dec 31 18:36:50 2021