| sphrec |
|
Table of contents
Procedure
SPHREC ( Spherical to rectangular coordinates )
SUBROUTINE SPHREC ( R, COLAT, SLON, RECTAN )
Abstract
Convert from spherical coordinates to rectangular coordinates.
Required_Reading
None.
Keywords
CONVERSION
COORDINATES
Declarations
IMPLICIT NONE
DOUBLE PRECISION R
DOUBLE PRECISION COLAT
DOUBLE PRECISION SLON
DOUBLE PRECISION RECTAN ( 3 )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
R I Distance of a point from the origin.
COLAT I Angle of the point from the Z-axis in radians.
SLON I Angle of the point from the XZ plane in radians.
RECTAN O Rectangular coordinates of the point.
Detailed_Input
R is the distance of the point from the origin.
COLAT is the angle between the point and the positive
Z-axis in radians.
SLON is the angle of the projection of the point to the
XY plane from the positive X-axis in radians. The
positive Y-axis is at longitude PI/2 radians.
Detailed_Output
RECTAN are the rectangular coordinates of a point.
Parameters
None.
Exceptions
Error free.
Files
None.
Particulars
This routine returns the rectangular coordinates of a point
whose position is input in spherical coordinates.
Spherical coordinates are defined by a distance from a central
reference point, an angle from a reference meridian, and an angle
from the Z-axis. The co-latitude of the positive Z-axis is
zero. The longitude of the positive Y-axis is PI/2 radians.
Examples
The numerical results shown for these examples may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Compute the spherical coordinates of the position of the Moon
as seen from the Earth, and convert them to rectangular
coordinates.
Use the meta-kernel shown below to load the required SPICE
kernels.
KPL/MK
File name: sphrec_ex1.tm
This meta-kernel is intended to support operation of SPICE
example programs. The kernels shown here should not be
assumed to contain adequate or correct versions of data
required by SPICE-based user applications.
In order for an application to use this meta-kernel, the
kernels referenced here must be present in the user's
current working directory.
The names and contents of the kernels referenced
by this meta-kernel are as follows:
File name Contents
--------- --------
de421.bsp Planetary ephemeris
naif0012.tls Leapseconds
\begindata
KERNELS_TO_LOAD = ( 'de421.bsp',
'naif0012.tls' )
\begintext
End of meta-kernel
Example code begins here.
PROGRAM SPHREC_EX1
IMPLICIT NONE
C
C SPICELIB functions
C
DOUBLE PRECISION DPR
C
C Local parameters
C
CHARACTER*(*) FMT1
PARAMETER ( FMT1 = '(A,F20.8)' )
C
C Local variables
C
DOUBLE PRECISION CLON
DOUBLE PRECISION COLAT
DOUBLE PRECISION ET
DOUBLE PRECISION LT
DOUBLE PRECISION POS ( 3 )
DOUBLE PRECISION R
DOUBLE PRECISION RADIUS
DOUBLE PRECISION RECTAN ( 3 )
DOUBLE PRECISION SLON
DOUBLE PRECISION Z
C
C Load SPK and LSK kernels, use a meta kernel for
C convenience.
C
CALL FURNSH ( 'sphrec_ex1.tm' )
C
C Look up the geometric state of the Moon as seen from
C the Earth at 2017 Mar 20, relative to the J2000
C reference frame.
C
CALL STR2ET ( '2017 Mar 20', ET )
CALL SPKPOS ( 'Moon', ET, 'J2000', 'NONE',
. 'Earth', POS, LT )
C
C Convert the position vector POS to spherical
C coordinates.
C
CALL RECSPH ( POS, RADIUS, COLAT, SLON )
C
C Convert the spherical coordinates to rectangular.
C
CALL SPHREC ( RADIUS, COLAT, SLON, RECTAN )
WRITE(*,*) ' '
WRITE(*,*) 'Original rectangular coordinates:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' X (km): ', POS(1)
WRITE(*,FMT1) ' Y (km): ', POS(2)
WRITE(*,FMT1) ' Z (km): ', POS(3)
WRITE(*,*) ' '
WRITE(*,*) 'Spherical coordinates:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' Radius (km): ', RADIUS
WRITE(*,FMT1) ' Colatitude (deg): ', COLAT*DPR()
WRITE(*,FMT1) ' Longitude (deg): ', SLON*DPR()
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular coordinates from SPHREC:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' X (km): ', RECTAN(1)
WRITE(*,FMT1) ' Y (km): ', RECTAN(2)
WRITE(*,FMT1) ' Z (km): ', RECTAN(3)
WRITE(*,*) ' '
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
Original rectangular coordinates:
X (km): -55658.44323296
Y (km): -379226.32931475
Z (km): -126505.93063865
Spherical coordinates:
Radius (km): 403626.33912495
Colatitude (deg): 108.26566077
Longitude (deg): -98.34959789
Rectangular coordinates from SPHREC:
X (km): -55658.44323296
Y (km): -379226.32931475
Z (km): -126505.93063865
2) Create a table showing a variety of spherical coordinates
and the corresponding rectangular coordinates.
Corresponding spherical and rectangular coordinates are
listed to three decimal places. Input angles are in degrees.
Example code begins here.
PROGRAM SPHREC_EX2
IMPLICIT NONE
C
C SPICELIB functions
C
DOUBLE PRECISION DPR
DOUBLE PRECISION RPD
C
C Local parameters.
C
INTEGER NREC
PARAMETER ( NREC = 11 )
C
C Local variables.
C
DOUBLE PRECISION COLAT ( NREC )
DOUBLE PRECISION RADIUS ( NREC )
DOUBLE PRECISION RCOLAT
DOUBLE PRECISION RSLON
DOUBLE PRECISION SLON ( NREC )
DOUBLE PRECISION RECTAN ( 3 )
INTEGER I
C
C Define the input spherical coordinates. Angles in
C degrees.
C
DATA RADIUS / 0.D0, 1.D0, 1.D0,
. 1.D0, 1.D0, 1.D0,
. 1.D0, 1.4142D0, 1.4142D0,
. 1.4142D0, 1.7320D0 /
DATA COLAT / 0.D0, 90.D0, 90.D0,
. 0.D0, 90.D0, 90.D0,
. 180.D0, 90.D0, 45.D0,
. 45.D0, 54.7356D0 /
DATA SLON / 0.D0, 0.D0, 90.D0,
. 0.D0, 180.D0, -90.D0,
. 0.D0, 45.D0, 0.D0,
. 90.D0, 45.D0 /
C
C Print the banner.
C
WRITE(*,*) ' RADIUS COLAT SLON '
. // ' RECT(1) RECT(2) RECT(3) '
WRITE(*,*) ' ------- ------- ------- '
. // ' ------- ------- ------- '
C
C Do the conversion.
C
DO I = 1, NREC
RCOLAT = COLAT(I) * RPD()
RSLON = SLON(I) * RPD()
CALL SPHREC( RADIUS(I), RCOLAT, RSLON, RECTAN )
WRITE (*,'(6F9.3)') RADIUS(I), COLAT(I), SLON(I),
. RECTAN
END DO
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
RADIUS COLAT SLON RECT(1) RECT(2) RECT(3)
------- ------- ------- ------- ------- -------
0.000 0.000 0.000 0.000 0.000 0.000
1.000 90.000 0.000 1.000 0.000 0.000
1.000 90.000 90.000 0.000 1.000 0.000
1.000 0.000 0.000 0.000 0.000 1.000
1.000 90.000 180.000 -1.000 0.000 0.000
1.000 90.000 -90.000 0.000 -1.000 0.000
1.000 180.000 0.000 0.000 0.000 -1.000
1.414 90.000 45.000 1.000 1.000 0.000
1.414 45.000 0.000 1.000 0.000 1.000
1.414 45.000 90.000 0.000 1.000 1.000
1.732 54.736 45.000 1.000 1.000 1.000
Restrictions
None.
Literature_References
None.
Author_and_Institution
J. Diaz del Rio (ODC Space)
B.V. Semenov (JPL)
W.L. Taber (JPL)
Version
SPICELIB Version 1.1.0, 13-AUG-2021 (JDR)
Changed the argument name LONG to SLON for consistency with
other routines.
Added IMPLICIT NONE statement.
Edited the header to comply with NAIF standard. Removed
unnecessary $Revisions section. Added complete code examples.
SPICELIB Version 1.0.4, 26-JUL-2016 (BVS)
Minor headers edits.
SPICELIB Version 1.0.3, 24-SEP-1997 (WLT)
The BRIEF I/O section was corrected so that it
correctly reflects the inputs and outputs.
SPICELIB Version 1.0.2, 12-JUL-1995 (WLT)
The header documentation was corrected so that longitude
now is correctly described as the angle from the
XZ plane instead of XY.
SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)
Comment section for permuted index source lines was added
following the header.
SPICELIB Version 1.0.0, 31-JAN-1990 (WLT)
|
Fri Dec 31 18:36:50 2021