sphrec |
Table of contents
ProcedureSPHREC ( Spherical to rectangular coordinates ) SUBROUTINE SPHREC ( R, COLAT, SLON, RECTAN ) AbstractConvert from spherical coordinates to rectangular coordinates. Required_ReadingNone. KeywordsCONVERSION COORDINATES DeclarationsIMPLICIT NONE DOUBLE PRECISION R DOUBLE PRECISION COLAT DOUBLE PRECISION SLON DOUBLE PRECISION RECTAN ( 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- R I Distance of a point from the origin. COLAT I Angle of the point from the Z-axis in radians. SLON I Angle of the point from the XZ plane in radians. RECTAN O Rectangular coordinates of the point. Detailed_InputR is the distance of the point from the origin. COLAT is the angle between the point and the positive Z-axis in radians. SLON is the angle of the projection of the point to the XY plane from the positive X-axis in radians. The positive Y-axis is at longitude PI/2 radians. Detailed_OutputRECTAN are the rectangular coordinates of a point. ParametersNone. ExceptionsError free. FilesNone. ParticularsThis routine returns the rectangular coordinates of a point whose position is input in spherical coordinates. Spherical coordinates are defined by a distance from a central reference point, an angle from a reference meridian, and an angle from the Z-axis. The co-latitude of the positive Z-axis is zero. The longitude of the positive Y-axis is PI/2 radians. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Compute the spherical coordinates of the position of the Moon as seen from the Earth, and convert them to rectangular coordinates. Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: sphrec_ex1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de421.bsp Planetary ephemeris naif0012.tls Leapseconds \begindata KERNELS_TO_LOAD = ( 'de421.bsp', 'naif0012.tls' ) \begintext End of meta-kernel Example code begins here. PROGRAM SPHREC_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F20.8)' ) C C Local variables C DOUBLE PRECISION CLON DOUBLE PRECISION COLAT DOUBLE PRECISION ET DOUBLE PRECISION LT DOUBLE PRECISION POS ( 3 ) DOUBLE PRECISION R DOUBLE PRECISION RADIUS DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION SLON DOUBLE PRECISION Z C C Load SPK and LSK kernels, use a meta kernel for C convenience. C CALL FURNSH ( 'sphrec_ex1.tm' ) C C Look up the geometric state of the Moon as seen from C the Earth at 2017 Mar 20, relative to the J2000 C reference frame. C CALL STR2ET ( '2017 Mar 20', ET ) CALL SPKPOS ( 'Moon', ET, 'J2000', 'NONE', . 'Earth', POS, LT ) C C Convert the position vector POS to spherical C coordinates. C CALL RECSPH ( POS, RADIUS, COLAT, SLON ) C C Convert the spherical coordinates to rectangular. C CALL SPHREC ( RADIUS, COLAT, SLON, RECTAN ) WRITE(*,*) ' ' WRITE(*,*) 'Original rectangular coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', POS(1) WRITE(*,FMT1) ' Y (km): ', POS(2) WRITE(*,FMT1) ' Z (km): ', POS(3) WRITE(*,*) ' ' WRITE(*,*) 'Spherical coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', RADIUS WRITE(*,FMT1) ' Colatitude (deg): ', COLAT*DPR() WRITE(*,FMT1) ' Longitude (deg): ', SLON*DPR() WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates from SPHREC:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', RECTAN(1) WRITE(*,FMT1) ' Y (km): ', RECTAN(2) WRITE(*,FMT1) ' Z (km): ', RECTAN(3) WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Original rectangular coordinates: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 Spherical coordinates: Radius (km): 403626.33912495 Colatitude (deg): 108.26566077 Longitude (deg): -98.34959789 Rectangular coordinates from SPHREC: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 2) Create a table showing a variety of spherical coordinates and the corresponding rectangular coordinates. Corresponding spherical and rectangular coordinates are listed to three decimal places. Input angles are in degrees. Example code begins here. PROGRAM SPHREC_EX2 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR DOUBLE PRECISION RPD C C Local parameters. C INTEGER NREC PARAMETER ( NREC = 11 ) C C Local variables. C DOUBLE PRECISION COLAT ( NREC ) DOUBLE PRECISION RADIUS ( NREC ) DOUBLE PRECISION RCOLAT DOUBLE PRECISION RSLON DOUBLE PRECISION SLON ( NREC ) DOUBLE PRECISION RECTAN ( 3 ) INTEGER I C C Define the input spherical coordinates. Angles in C degrees. C DATA RADIUS / 0.D0, 1.D0, 1.D0, . 1.D0, 1.D0, 1.D0, . 1.D0, 1.4142D0, 1.4142D0, . 1.4142D0, 1.7320D0 / DATA COLAT / 0.D0, 90.D0, 90.D0, . 0.D0, 90.D0, 90.D0, . 180.D0, 90.D0, 45.D0, . 45.D0, 54.7356D0 / DATA SLON / 0.D0, 0.D0, 90.D0, . 0.D0, 180.D0, -90.D0, . 0.D0, 45.D0, 0.D0, . 90.D0, 45.D0 / C C Print the banner. C WRITE(*,*) ' RADIUS COLAT SLON ' . // ' RECT(1) RECT(2) RECT(3) ' WRITE(*,*) ' ------- ------- ------- ' . // ' ------- ------- ------- ' C C Do the conversion. C DO I = 1, NREC RCOLAT = COLAT(I) * RPD() RSLON = SLON(I) * RPD() CALL SPHREC( RADIUS(I), RCOLAT, RSLON, RECTAN ) WRITE (*,'(6F9.3)') RADIUS(I), COLAT(I), SLON(I), . RECTAN END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: RADIUS COLAT SLON RECT(1) RECT(2) RECT(3) ------- ------- ------- ------- ------- ------- 0.000 0.000 0.000 0.000 0.000 0.000 1.000 90.000 0.000 1.000 0.000 0.000 1.000 90.000 90.000 0.000 1.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 90.000 180.000 -1.000 0.000 0.000 1.000 90.000 -90.000 0.000 -1.000 0.000 1.000 180.000 0.000 0.000 0.000 -1.000 1.414 90.000 45.000 1.000 1.000 0.000 1.414 45.000 0.000 1.000 0.000 1.000 1.414 45.000 90.000 0.000 1.000 1.000 1.732 54.736 45.000 1.000 1.000 1.000 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionJ. Diaz del Rio (ODC Space) B.V. Semenov (JPL) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 13-AUG-2021 (JDR) Changed the argument name LONG to SLON for consistency with other routines. Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Removed unnecessary $Revisions section. Added complete code examples. SPICELIB Version 1.0.4, 26-JUL-2016 (BVS) Minor headers edits. SPICELIB Version 1.0.3, 24-SEP-1997 (WLT) The BRIEF I/O section was corrected so that it correctly reflects the inputs and outputs. SPICELIB Version 1.0.2, 12-JUL-1995 (WLT) The header documentation was corrected so that longitude now is correctly described as the angle from the XZ plane instead of XY. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 31-JAN-1990 (WLT) |
Fri Dec 31 18:36:50 2021