latsph |
Table of contents
ProcedureLATSPH ( Latitudinal to spherical coordinates ) SUBROUTINE LATSPH ( RADIUS, LON, LAT, RHO, COLAT, SLON ) AbstractConvert from latitudinal coordinates to spherical coordinates. Required_ReadingNone. KeywordsCONVERSION COORDINATES DeclarationsIMPLICIT NONE DOUBLE PRECISION RADIUS DOUBLE PRECISION LON DOUBLE PRECISION LAT DOUBLE PRECISION RHO DOUBLE PRECISION COLAT DOUBLE PRECISION SLON Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- RADIUS I Distance of a point from the origin. LON I Angle of the point from the XZ plane in radians. LAT I Angle of the point from the XY plane in radians. RHO O Distance of the point from the origin. COLAT O Angle of the point from positive Z axis (radians). SLON O Angle of the point from the XZ plane (radians). Detailed_InputRADIUS is the distance of a point from the origin. LON is the angle of the point from the XZ plane in radians. LAT is the angle of the point from the XY plane in radians. Detailed_OutputRHO is the distance of the point from the origin. COLAT is the angle between the vector from the origin to the point and the positive Z axis in radians. COLAT is computed as PI/2 - LAT. SLON is the angle of the point from the XZ plane (radians). SLON is set equal to LON. ParametersNone. ExceptionsError free. FilesNone. ParticularsThis routine returns the spherical coordinates of a point whose position is input in latitudinal coordinates. Latitudinal coordinates are defined by a distance from a central reference point, an angle from a reference meridian, and an angle above the equator of a sphere centered at the central reference point. Spherical coordinates are defined by a distance from a central reference point, an angle from a reference meridian, and an angle from the z-axis. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Co-latitude is obtained by subtracting latitude from HALFPI() Radius and longitude mean the same thing in both latitudinal and spherical coordinates. The table below lists LAT and corresponding COLAT in terms of degrees. LAT COLAT ----- ----- 0 90 20 70 45 45 -30 120 90 0 -45 135 2) Compute the latitudinal coordinates of the position of the Moon as seen from the Earth, and convert them to spherical and rectangular coordinates. Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: latsph_ex2.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de421.bsp Planetary ephemeris naif0012.tls Leapseconds \begindata KERNELS_TO_LOAD = ( 'de421.bsp', 'naif0012.tls' ) \begintext End of meta-kernel Example code begins here. PROGRAM LATSPH_EX2 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F20.8)' ) C C Local variables C DOUBLE PRECISION COLAT DOUBLE PRECISION ET DOUBLE PRECISION LAT DOUBLE PRECISION LON DOUBLE PRECISION LT DOUBLE PRECISION POS ( 3 ) DOUBLE PRECISION R DOUBLE PRECISION RADIUS DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION SLON C C Load SPK and LSK kernels, use a meta kernel for C convenience. C CALL FURNSH ( 'latsph_ex2.tm' ) C C Look up the geometric state of the Moon as seen from C the Earth at 2017 Mar 20, relative to the J2000 C reference frame. C CALL STR2ET ( '2017 Mar 20', ET ) CALL SPKPOS ( 'Moon', ET, 'J2000', 'NONE', . 'Earth', POS, LT ) C C Convert the position vector POS to latitudinal C coordinates. C CALL RECLAT ( POS, RADIUS, LON, LAT ) C C Convert the latitudinal coordinates to spherical. C CALL LATSPH ( RADIUS, LON, LAT, R, COLAT, SLON ) C C Convert the spherical coordinates to rectangular. C CALL SPHREC ( R, COLAT, SLON, RECTAN ) WRITE(*,*) ' ' WRITE(*,*) 'Original rectangular coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', POS(1) WRITE(*,FMT1) ' Y (km): ', POS(2) WRITE(*,FMT1) ' Z (km): ', POS(3) WRITE(*,*) ' ' WRITE(*,*) 'Latitudinal coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', RADIUS WRITE(*,FMT1) ' Longitude (deg): ', LON*DPR() WRITE(*,FMT1) ' Latitude (deg): ', LAT*DPR() WRITE(*,*) ' ' WRITE(*,*) 'Spherical coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', R WRITE(*,FMT1) ' Colatitude (deg): ', COLAT*DPR() WRITE(*,FMT1) ' Longitude (deg): ', SLON*DPR() WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates from SPHREC:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', RECTAN(1) WRITE(*,FMT1) ' Y (km): ', RECTAN(2) WRITE(*,FMT1) ' Z (km): ', RECTAN(3) WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Original rectangular coordinates: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 Latitudinal coordinates: Radius (km): 403626.33912495 Longitude (deg): -98.34959789 Latitude (deg): -18.26566077 Spherical coordinates: Radius (km): 403626.33912495 Colatitude (deg): 108.26566077 Longitude (deg): -98.34959789 Rectangular coordinates from SPHREC: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 3) Create a table showing a variety of latitudinal coordinates and the corresponding spherical coordinates. Corresponding latitudinal and spherical coordinates are listed to three decimal places. Input and output angles are in degrees. Example code begins here. PROGRAM LATSPH_EX3 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR DOUBLE PRECISION RPD C C Local parameters. C INTEGER NREC PARAMETER ( NREC = 11 ) C C Local variables. C DOUBLE PRECISION COLAT DOUBLE PRECISION LAT ( NREC ) DOUBLE PRECISION LON ( NREC ) DOUBLE PRECISION R DOUBLE PRECISION RADIUS ( NREC ) DOUBLE PRECISION RLAT DOUBLE PRECISION RLON DOUBLE PRECISION SLON INTEGER I C C Define the input latitudinal coordinates. Angles in C degrees. C DATA RADIUS / 0.D0, 1.D0, 1.D0, . 1.D0, 1.4142D0, 1.D0, . 1.D0, 1.D0, 1.4142D0, . 1.D0, 0.D0 / DATA LON / 0.D0, 0.D0, 90.D0, . 0.D0, 180.D0, -90.D0, . 0.D0, 45.D0, 180.D0, . 180.D0, 33.D0 / DATA LAT / 90.D0, 0.D0, 0.D0, . 90.D0, 45.D0, 0.D0, . -90.D0, 0.D0, -45.D0, . 90.D0, 0.D0 / C C Print the banner. C WRITE(*,*) ' RADIUS LON LAT ' . // ' R COLAT SLON ' WRITE(*,*) ' ------- ------- ------- ' . // ' ------- ------- ------- ' C C Do the conversion. Output angles in degrees. C DO I = 1, NREC RLON = LON(I) * RPD() RLAT = LAT(I) * RPD() CALL LATSPH( RADIUS(I), RLON, RLAT, R, COLAT, SLON ) WRITE (*,'(6F9.3)') RADIUS(I), LON(I), LAT(I), . R, COLAT * DPR(), SLON * DPR() END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: RADIUS LON LAT R COLAT SLON ------- ------- ------- ------- ------- ------- 0.000 0.000 90.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 90.000 0.000 1.000 90.000 0.000 1.000 90.000 90.000 1.000 0.000 90.000 1.000 0.000 0.000 1.414 180.000 45.000 1.414 45.000 180.000 1.000 -90.000 0.000 1.000 90.000 -90.000 1.000 0.000 -90.000 1.000 180.000 0.000 1.000 45.000 0.000 1.000 90.000 45.000 1.414 180.000 -45.000 1.414 135.000 180.000 1.000 180.000 90.000 1.000 0.000 180.000 0.000 33.000 0.000 0.000 90.000 33.000 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionJ. Diaz del Rio (ODC Space) B.V. Semenov (JPL) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 04-JUL-2021 (JDR) Changed the argument names LONG and LONGS to LON and SLON for consistency with other routines. Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Removed unnecessary $Revisions section. Added complete code examples. SPICELIB Version 1.0.2, 26-JUL-2016 (BVS) Minor headers edits. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 31-JAN-1990 (WLT) |
Fri Dec 31 18:36:30 2021