reclat |
Table of contents
ProcedureRECLAT ( Rectangular to latitudinal coordinates ) SUBROUTINE RECLAT ( RECTAN, RADIUS, LON, LAT ) AbstractConvert from rectangular coordinates to latitudinal coordinates. Required_ReadingNone. KeywordsCONVERSION COORDINATES DeclarationsIMPLICIT NONE DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION RADIUS DOUBLE PRECISION LON DOUBLE PRECISION LAT Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- RECTAN I Rectangular coordinates of the point. RADIUS O Distance of a point from the origin. LON O Longitude of point in radians. LAT O Latitude of point in radians. Detailed_InputRECTAN are the rectangular coordinates of a point. Detailed_OutputRADIUS is the distance of a point from the origin. The units associated with RADIUS are those associated with the input RECTAN. LON is the longitude of the input point. This is the angle between the prime meridian and the meridian containing the point. The direction of increasing longitude is from the +X axis towards the +Y axis. LON is output in radians. The range of LON is [ -pi, pi]. LAT is the latitude of the input point. This is the angle from the XY plane of the ray from the origin through the point. LAT is output in radians. The range of LAT is [-pi/2, pi/2]. ParametersNone. ExceptionsError free. 1) If the X and Y components of RECTAN are both zero, the longitude is set to zero. 2) If RECTAN is the zero vector, longitude and latitude are both set to zero. FilesNone. ParticularsThis routine returns the latitudinal coordinates of a point whose position is input in rectangular coordinates. Latitudinal coordinates are defined by a distance from a central reference point, an angle from a reference meridian, and an angle above the equator of a sphere centered at the central reference point. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Compute the latitudinal coordinates of the position of the Moon as seen from the Earth, and convert them to rectangular coordinates. Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: reclat_ex1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de421.bsp Planetary ephemeris naif0012.tls Leapseconds \begindata KERNELS_TO_LOAD = ( 'de421.bsp', 'naif0012.tls' ) \begintext End of meta-kernel Example code begins here. PROGRAM RECLAT_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F20.8)' ) C C Local variables C DOUBLE PRECISION ET DOUBLE PRECISION LAT DOUBLE PRECISION LON DOUBLE PRECISION LT DOUBLE PRECISION POS ( 3 ) DOUBLE PRECISION RADIUS DOUBLE PRECISION RECTAN ( 3 ) C C Load SPK and LSK kernels, use a meta kernel for C convenience. C CALL FURNSH ( 'reclat_ex1.tm' ) C C Look up the geometric state of the Moon as seen from C the Earth at 2017 Mar 20, relative to the J2000 C reference frame. C CALL STR2ET ( '2017 Mar 20', ET ) CALL SPKPOS ( 'Moon', ET, 'J2000', 'NONE', . 'Earth', POS, LT ) C C Convert the position vector POS to latitudinal C coordinates. C CALL RECLAT ( POS, RADIUS, LON, LAT ) C C Convert the latitudinal to rectangular coordinates. C CALL LATREC ( RADIUS, LON, LAT, RECTAN ) WRITE(*,*) ' ' WRITE(*,*) 'Original rectangular coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', POS(1) WRITE(*,FMT1) ' Y (km): ', POS(2) WRITE(*,FMT1) ' Z (km): ', POS(3) WRITE(*,*) ' ' WRITE(*,*) 'Latitudinal coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', RADIUS WRITE(*,FMT1) ' Longitude (deg): ', LON*DPR() WRITE(*,FMT1) ' Latitude (deg): ', LAT*DPR() WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates from LATREC:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', RECTAN(1) WRITE(*,FMT1) ' Y (km): ', RECTAN(2) WRITE(*,FMT1) ' Z (km): ', RECTAN(3) WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Original rectangular coordinates: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 Latitudinal coordinates: Radius (km): 403626.33912495 Longitude (deg): -98.34959789 Latitude (deg): -18.26566077 Rectangular coordinates from LATREC: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 2) Create a table showing a variety of rectangular coordinates and the corresponding latitudinal coordinates. Corresponding rectangular and latitudinal coordinates are listed to three decimal places. Output angles are in degrees. Example code begins here. PROGRAM RECLAT_EX2 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters. C INTEGER NREC PARAMETER ( NREC = 11 ) C C Local variables. C DOUBLE PRECISION LAT DOUBLE PRECISION LON DOUBLE PRECISION RADIUS DOUBLE PRECISION RECTAN ( 3, NREC ) INTEGER I INTEGER J C C Define the input rectangular coordinates. C DATA RECTAN / . 0.D0, 0.D0, 0.D0, . 1.D0, 0.D0, 0.D0, . 0.D0, 1.D0, 0.D0, . 0.D0, 0.D0, 1.D0, . -1.D0, 0.D0, 0.D0, . 0.D0, -1.D0, 0.D0, . 0.D0, 0.D0, -1.D0, . 1.D0, 1.D0, 0.D0, . 1.D0, 0.D0, 1.D0, . 0.D0, 1.D0, 1.D0, . 1.D0, 1.D0, 1.D0 / C C Print the banner. C WRITE(*,*) ' RECT(1) RECT(2) RECT(3) ' . // ' RADIUS LON LAT ' WRITE(*,*) ' ------- ------- ------- ' . // ' ------- ------- ------- ' C C Do the conversion. Output angles in degrees. C DO I = 1, NREC CALL RECLAT( RECTAN(1,I), RADIUS, LON, LAT ) WRITE (*,'(6F9.3)') ( RECTAN(J,I), J=1,3 ), . RADIUS, LON * DPR(), LAT * DPR() END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: RECT(1) RECT(2) RECT(3) RADIUS LON LAT ------- ------- ------- ------- ------- ------- 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 90.000 0.000 0.000 0.000 1.000 1.000 0.000 90.000 -1.000 0.000 0.000 1.000 180.000 0.000 0.000 -1.000 0.000 1.000 -90.000 0.000 0.000 0.000 -1.000 1.000 0.000 -90.000 1.000 1.000 0.000 1.414 45.000 0.000 1.000 0.000 1.000 1.414 0.000 45.000 0.000 1.000 1.000 1.414 90.000 45.000 1.000 1.000 1.000 1.732 45.000 35.264 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionC.H. Acton (JPL) N.J. Bachman (JPL) J. Diaz del Rio (ODC Space) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 05-JUL-2021 (JDR) Changed the output argument name LONG to LON for consistency with other routines. Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Removed unnecessary $Revisions section. Added complete code examples. SPICELIB Version 1.0.2, 30-JUL-2003 (NJB) (CHA) Various header changes were made to improve clarity. Some minor header corrections were made. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 31-JAN-1990 (WLT) |
Fri Dec 31 18:36:42 2021