Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
drdlat

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     DRDLAT ( Derivative of rectangular w.r.t. latitudinal )

     SUBROUTINE DRDLAT ( R, LON, LAT, JACOBI )

Abstract

     Compute the Jacobian matrix of the transformation from
     latitudinal to rectangular coordinates.

Required_Reading

     None.

Keywords

     COORDINATES
     DERIVATIVES
     MATRIX

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION      R
     DOUBLE PRECISION      LON
     DOUBLE PRECISION      LAT
     DOUBLE PRECISION      JACOBI ( 3, 3 )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     R          I   Distance of a point from the origin.
     LON        I   Angle of the point from the XZ plane in radians.
     LAT        I   Angle of the point from the XY plane in radians.
     JACOBI     O   Matrix of partial derivatives.

Detailed_Input

     R        is the distance of a point from the origin.

     LON      is the angle of the point from the XZ plane in
              radians. The angle increases in the counterclockwise
              sense about the +Z axis.

     LAT      is the angle of the point from the XY plane in
              radians. The angle increases in the direction of the
              +Z axis.

Detailed_Output

     JACOBI   is the matrix of partial derivatives of the conversion
              between latitudinal and rectangular coordinates. It has
              the form

                  .-                               -.
                  |  DX/DR     DX/DLON     DX/DLAT  |
                  |                                 |
                  |  DY/DR     DY/DLON     DY/DLAT  |
                  |                                 |
                  |  DZ/DR     DZ/DLON     DZ/DLAT  |
                  `-                               -'

              evaluated at the input values of R, LON and LAT.
              Here X, Y, and Z are given by the familiar formulae

                 X = R * COS(LON) * COS(LAT)
                 Y = R * SIN(LON) * COS(LAT)
                 Z = R *            SIN(LAT)

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     It is often convenient to describe the motion of an object
     in latitudinal coordinates. It is also convenient to manipulate
     vectors associated with the object in rectangular coordinates.

     The transformation of a latitudinal state into an equivalent
     rectangular state makes use of the Jacobian of the
     transformation between the two systems.

     Given a state in latitudinal coordinates,

          ( r, lon, lat, dr, dlon, dlat )

     the velocity in rectangular coordinates is given by the matrix
     equation
                    t          |                               t
        (dx, dy, dz)   = JACOBI|             * (dr, dlon, dlat)
                               |(r,lon,lat)

     This routine computes the matrix

              |
        JACOBI|
              |(r,lon,lat)

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Find the latitudinal state of the Earth as seen from
        Mars in the IAU_MARS reference frame at January 1, 2005 TDB.
        Map this state back to rectangular coordinates as a check.

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: drdlat_ex1.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                     Contents
              ---------                     --------
              de421.bsp                     Planetary ephemeris
              pck00010.tpc                  Planet orientation and
                                            radii
              naif0009.tls                  Leapseconds


           \begindata

              KERNELS_TO_LOAD = ( 'de421.bsp',
                                  'pck00010.tpc',
                                  'naif0009.tls'  )

           \begintext

           End of meta-kernel


        Example code begins here.


              PROGRAM DRDLAT_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      RPD

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1 = '(A,E18.8)' )
        C
        C     Local variables
        C
              DOUBLE PRECISION      DRECTN ( 3 )
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      JACOBI ( 3, 3 )
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      LATVEL ( 3 )
              DOUBLE PRECISION      RECTAN ( 3 )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      STATE  ( 6 )

        C
        C     Load SPK, PCK and LSK kernels, use a meta kernel for
        C     convenience.
        C
              CALL FURNSH ( 'drdlat_ex1.tm' )

        C
        C     Look up the apparent state of earth as seen from Mars at
        C     January 1, 2005 TDB, relative to the IAU_MARS reference
        C     frame.
        C
              CALL STR2ET ( 'January 1, 2005 TDB', ET )

              CALL SPKEZR ( 'Earth', ET,    'IAU_MARS', 'LT+S',
             .              'Mars',  STATE, LT                )

        C
        C     Convert position to latitudinal coordinates.
        C
              CALL RECLAT ( STATE, R, LON, LAT )

        C
        C     Convert velocity to latitudinal coordinates.
        C

              CALL DLATDR ( STATE(1), STATE(2), STATE(3), JACOBI )

              CALL MXV ( JACOBI, STATE(4), LATVEL )

        C
        C     As a check, convert the latitudinal state back to
        C     rectangular coordinates.
        C
              CALL LATREC ( R, LON, LAT, RECTAN )

              CALL DRDLAT ( R, LON, LAT, JACOBI )

              CALL MXV ( JACOBI, LATVEL, DRECTN )


              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X (km)                 = ', STATE(1)
              WRITE(*,FMT1) '  Y (km)                 = ', STATE(2)
              WRITE(*,FMT1) '  Z (km)                 = ', STATE(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular velocity:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  dX/dt (km/s)           = ', STATE(4)
              WRITE(*,FMT1) '  dY/dt (km/s)           = ', STATE(5)
              WRITE(*,FMT1) '  dZ/dt (km/s)           = ', STATE(6)
              WRITE(*,*) ' '
              WRITE(*,*) 'Latitudinal coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius    (km)         = ', R
              WRITE(*,FMT1) '  Longitude (deg)        = ', LON/RPD()
              WRITE(*,FMT1) '  Latitude  (deg)        = ', LAT/RPD()
              WRITE(*,*) ' '
              WRITE(*,*) 'Latitudinal velocity:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  d Radius/dt    (km/s)  = ', LATVEL(1)
              WRITE(*,FMT1) '  d Longitude/dt (deg/s) = ',
             .                                         LATVEL(2)/RPD()
              WRITE(*,FMT1) '  d Latitude/dt  (deg/s) = ',
             .                                         LATVEL(3)/RPD()
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates from inverse ' //
             .           'mapping:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X (km)                 = ', RECTAN(1)
              WRITE(*,FMT1) '  Y (km)                 = ', RECTAN(2)
              WRITE(*,FMT1) '  Z (km)                 = ', RECTAN(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular velocity from inverse mapping:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  dX/dt (km/s)           = ', DRECTN(1)
              WRITE(*,FMT1) '  dY/dt (km/s)           = ', DRECTN(2)
              WRITE(*,FMT1) '  dZ/dt (km/s)           = ', DRECTN(3)
              WRITE(*,*) ' '
              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Rectangular coordinates:

          X (km)                 =    -0.76096183E+08
          Y (km)                 =     0.32436380E+09
          Z (km)                 =     0.47470484E+08

         Rectangular velocity:

          dX/dt (km/s)           =     0.22952075E+05
          dY/dt (km/s)           =     0.53760111E+04
          dZ/dt (km/s)           =    -0.20881149E+02

         Latitudinal coordinates:

          Radius    (km)         =     0.33653522E+09
          Longitude (deg)        =     0.10320290E+03
          Latitude  (deg)        =     0.81089866E+01

         Latitudinal velocity:

          d Radius/dt    (km/s)  =    -0.11211601E+02
          d Longitude/dt (deg/s) =    -0.40539288E-02
          d Latitude/dt  (deg/s) =    -0.33189930E-05

         Rectangular coordinates from inverse mapping:

          X (km)                 =    -0.76096183E+08
          Y (km)                 =     0.32436380E+09
          Z (km)                 =     0.47470484E+08

         Rectangular velocity from inverse mapping:

          dX/dt (km/s)           =     0.22952075E+05
          dY/dt (km/s)           =     0.53760111E+04
          dZ/dt (km/s)           =    -0.20881149E+02

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 26-OCT-2020 (JDR) 

        Changed the input argument name LONG to LON for consistency
        with other routines.

        Edited the header to comply with NAIF standard. Added complete
        code example.

        Updated $Brief_I/O and $Detailed_Input sections to correct R
        argument name, which in previous version was RADIUS.

    SPICELIB Version 1.0.0, 19-JUL-2001 (WLT)
Fri Dec 31 18:36:14 2021