dlatdr |
Table of contents
ProcedureDLATDR ( Derivative of latitudinal w.r.t. rectangular ) SUBROUTINE DLATDR ( X, Y, Z, JACOBI ) AbstractCompute the Jacobian matrix of the transformation from rectangular to latitudinal coordinates. Required_ReadingNone. KeywordsCOORDINATES DERIVATIVES MATRIX DeclarationsIMPLICIT NONE DOUBLE PRECISION X DOUBLE PRECISION Y DOUBLE PRECISION Z DOUBLE PRECISION JACOBI ( 3, 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- X I X-coordinate of point. Y I Y-coordinate of point. Z I Z-coordinate of point. JACOBI O Matrix of partial derivatives. Detailed_InputX, Y, Z are the rectangular coordinates of the point at which the Jacobian of the map from rectangular to latitudinal coordinates is desired. Detailed_OutputJACOBI is the matrix of partial derivatives of the conversion between rectangular and latitudinal coordinates. It has the form .- -. | dr/dx dr/dy dr/dz | | dlong/dx dlong/dy dlong/dz | | dlat/dx dlat/dy dlat/dz | `- -' evaluated at the input values of X, Y, and Z. ParametersNone. Exceptions1) If the input point is on the z-axis (X = 0 and Y = 0), the Jacobian is undefined, the error SPICE(POINTONZAXIS) is signaled. FilesNone. ParticularsWhen performing vector calculations with velocities it is usually most convenient to work in rectangular coordinates. However, once the vector manipulations have been performed it is often desirable to convert the rectangular representations into latitudinal coordinates to gain insights about phenomena in this coordinate frame. To transform rectangular velocities to derivatives of coordinates in a latitudinal system, one uses the Jacobian of the transformation between the two systems. Given a state in rectangular coordinates ( x, y, z, dx, dy, dz ) the corresponding latitudinal coordinate derivatives are given by the matrix equation: t | t (dr, dlong, dlat) = JACOBI| * (dx, dy, dz) |(x,y,z) This routine computes the matrix | JACOBI| |(x, y, z) ExamplesThe numerical results shown for this example may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Find the latitudinal state of the Earth as seen from Mars in the IAU_MARS reference frame at January 1, 2005 TDB. Map this state back to rectangular coordinates as a check. Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: dlatdr_ex1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de421.bsp Planetary ephemeris pck00010.tpc Planet orientation and radii naif0009.tls Leapseconds \begindata KERNELS_TO_LOAD = ( 'de421.bsp', 'pck00010.tpc', 'naif0009.tls' ) \begintext End of meta-kernel Example code begins here. PROGRAM DLATDR_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION RPD C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,E18.8)' ) C C Local variables C DOUBLE PRECISION DRECTN ( 3 ) DOUBLE PRECISION ET DOUBLE PRECISION JACOBI ( 3, 3 ) DOUBLE PRECISION LAT DOUBLE PRECISION LON DOUBLE PRECISION LT DOUBLE PRECISION LATVEL ( 3 ) DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION R DOUBLE PRECISION STATE ( 6 ) C C Load SPK, PCK and LSK kernels, use a meta kernel for C convenience. C CALL FURNSH ( 'dlatdr_ex1.tm' ) C C Look up the apparent state of earth as seen from Mars C at January 1, 2005 TDB, relative to the IAU_MARS C reference frame. C CALL STR2ET ( 'January 1, 2005 TDB', ET ) CALL SPKEZR ( 'Earth', ET, 'IAU_MARS', 'LT+S', . 'Mars', STATE, LT ) C C Convert position to latitudinal coordinates. C CALL RECLAT ( STATE, R, LON, LAT ) C C Convert velocity to latitudinal coordinates. C CALL DLATDR ( STATE(1), STATE(2), STATE(3), JACOBI ) CALL MXV ( JACOBI, STATE(4), LATVEL ) C C As a check, convert the latitudinal state back to C rectangular coordinates. C CALL LATREC ( R, LON, LAT, RECTAN ) CALL DRDLAT ( R, LON, LAT, JACOBI ) CALL MXV ( JACOBI, LATVEL, DRECTN ) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km) = ', STATE(1) WRITE(*,FMT1) ' Y (km) = ', STATE(2) WRITE(*,FMT1) ' Z (km) = ', STATE(3) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular velocity:' WRITE(*,*) ' ' WRITE(*,FMT1) ' dX/dt (km/s) = ', STATE(4) WRITE(*,FMT1) ' dY/dt (km/s) = ', STATE(5) WRITE(*,FMT1) ' dZ/dt (km/s) = ', STATE(6) WRITE(*,*) ' ' WRITE(*,*) 'Latitudinal coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km) = ', R WRITE(*,FMT1) ' Longitude (deg) = ', LON/RPD() WRITE(*,FMT1) ' Latitude (deg) = ', LAT/RPD() WRITE(*,*) ' ' WRITE(*,*) 'Latitudinal velocity:' WRITE(*,*) ' ' WRITE(*,FMT1) ' d Radius/dt (km/s) = ', LATVEL(1) WRITE(*,FMT1) ' d Longitude/dt (deg/s) = ', . LATVEL(2)/RPD() WRITE(*,FMT1) ' d Latitude/dt (deg/s) = ', . LATVEL(3)/RPD() WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates from inverse ' // . 'mapping:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km) = ', RECTAN(1) WRITE(*,FMT1) ' Y (km) = ', RECTAN(2) WRITE(*,FMT1) ' Z (km) = ', RECTAN(3) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular velocity from inverse mapping:' WRITE(*,*) ' ' WRITE(*,FMT1) ' dX/dt (km/s) = ', DRECTN(1) WRITE(*,FMT1) ' dY/dt (km/s) = ', DRECTN(2) WRITE(*,FMT1) ' dZ/dt (km/s) = ', DRECTN(3) WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Rectangular coordinates: X (km) = -0.76096183E+08 Y (km) = 0.32436380E+09 Z (km) = 0.47470484E+08 Rectangular velocity: dX/dt (km/s) = 0.22952075E+05 dY/dt (km/s) = 0.53760111E+04 dZ/dt (km/s) = -0.20881149E+02 Latitudinal coordinates: Radius (km) = 0.33653522E+09 Longitude (deg) = 0.10320290E+03 Latitude (deg) = 0.81089866E+01 Latitudinal velocity: d Radius/dt (km/s) = -0.11211601E+02 d Longitude/dt (deg/s) = -0.40539288E-02 d Latitude/dt (deg/s) = -0.33189930E-05 Rectangular coordinates from inverse mapping: X (km) = -0.76096183E+08 Y (km) = 0.32436380E+09 Z (km) = 0.47470484E+08 Rectangular velocity from inverse mapping: dX/dt (km/s) = 0.22952075E+05 dY/dt (km/s) = 0.53760111E+04 dZ/dt (km/s) = -0.20881149E+02 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionJ. Diaz del Rio (ODC Space) W.L. Taber (JPL) VersionSPICELIB Version 1.0.1, 26-OCT-2021 (JDR) Edited the header to comply with NAIF standard. Added complete code example. SPICELIB Version 1.0.0, 16-JUL-2001 (WLT) |
Fri Dec 31 18:36:14 2021