Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
dlatdr

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     DLATDR ( Derivative of latitudinal w.r.t. rectangular )

     SUBROUTINE DLATDR ( X, Y, Z, JACOBI )

Abstract

     Compute the Jacobian matrix of the transformation from
     rectangular to latitudinal coordinates.

Required_Reading

     None.

Keywords

     COORDINATES
     DERIVATIVES
     MATRIX

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION      X
     DOUBLE PRECISION      Y
     DOUBLE PRECISION      Z
     DOUBLE PRECISION      JACOBI ( 3, 3 )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     X          I   X-coordinate of point.
     Y          I   Y-coordinate of point.
     Z          I   Z-coordinate of point.
     JACOBI     O   Matrix of partial derivatives.

Detailed_Input

     X,
     Y,
     Z        are the rectangular coordinates of the point at
              which the Jacobian of the map from rectangular
              to latitudinal coordinates is desired.

Detailed_Output

     JACOBI   is the matrix of partial derivatives of the conversion
              between rectangular and latitudinal coordinates. It
              has the form

                  .-                              -.
                  |  dr/dx     dr/dy     dr/dz     |
                  |  dlong/dx  dlong/dy  dlong/dz  |
                  |  dlat/dx   dlat/dy   dlat/dz   |
                  `-                              -'

               evaluated at the input values of X, Y, and Z.

Parameters

     None.

Exceptions

     1)  If the input point is on the z-axis (X = 0 and Y = 0), the
         Jacobian is undefined, the error SPICE(POINTONZAXIS) is
         signaled.

Files

     None.

Particulars

     When performing vector calculations with velocities it is
     usually most convenient to work in rectangular coordinates.
     However, once the vector manipulations have been performed
     it is often desirable to convert the rectangular representations
     into latitudinal coordinates to gain insights about phenomena
     in this coordinate frame.

     To transform rectangular velocities to derivatives of coordinates
     in a latitudinal system, one uses the Jacobian of the
     transformation between the two systems.

     Given a state in rectangular coordinates

          ( x, y, z, dx, dy, dz )

     the corresponding latitudinal coordinate derivatives are given by
     the matrix equation:

                         t          |                     t
        (dr, dlong, dlat)   = JACOBI|        * (dx, dy, dz)
                                    |(x,y,z)

     This routine computes the matrix

              |
        JACOBI|
              |(x, y, z)

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Find the latitudinal state of the Earth as seen from
        Mars in the IAU_MARS reference frame at January 1, 2005 TDB.
        Map this state back to rectangular coordinates as a check.

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: dlatdr_ex1.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                     Contents
              ---------                     --------
              de421.bsp                     Planetary ephemeris
              pck00010.tpc                  Planet orientation and
                                            radii
              naif0009.tls                  Leapseconds


           \begindata

              KERNELS_TO_LOAD = ( 'de421.bsp',
                                  'pck00010.tpc',
                                  'naif0009.tls'  )

           \begintext

           End of meta-kernel


        Example code begins here.


              PROGRAM DLATDR_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      RPD

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1 = '(A,E18.8)' )
        C
        C     Local variables
        C
              DOUBLE PRECISION      DRECTN ( 3 )
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      JACOBI ( 3, 3 )
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      LATVEL ( 3 )
              DOUBLE PRECISION      RECTAN ( 3 )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      STATE  ( 6 )

        C
        C     Load SPK, PCK and LSK kernels, use a meta kernel for
        C     convenience.
        C
              CALL FURNSH ( 'dlatdr_ex1.tm' )

        C
        C     Look up the apparent state of earth as seen from Mars
        C     at January 1, 2005 TDB, relative to the IAU_MARS
        C     reference frame.
        C
              CALL STR2ET ( 'January 1, 2005 TDB', ET )

              CALL SPKEZR ( 'Earth', ET,    'IAU_MARS', 'LT+S',
             .              'Mars',  STATE, LT                )

        C
        C     Convert position to latitudinal coordinates.
        C
              CALL RECLAT ( STATE, R, LON, LAT )

        C
        C     Convert velocity to latitudinal coordinates.
        C

              CALL DLATDR ( STATE(1), STATE(2), STATE(3), JACOBI )

              CALL MXV ( JACOBI, STATE(4), LATVEL )

        C
        C     As a check, convert the latitudinal state back to
        C     rectangular coordinates.
        C
              CALL LATREC ( R, LON, LAT, RECTAN )

              CALL DRDLAT ( R, LON, LAT, JACOBI )

              CALL MXV ( JACOBI, LATVEL, DRECTN )


              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X (km)                 = ', STATE(1)
              WRITE(*,FMT1) '  Y (km)                 = ', STATE(2)
              WRITE(*,FMT1) '  Z (km)                 = ', STATE(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular velocity:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  dX/dt (km/s)           = ', STATE(4)
              WRITE(*,FMT1) '  dY/dt (km/s)           = ', STATE(5)
              WRITE(*,FMT1) '  dZ/dt (km/s)           = ', STATE(6)
              WRITE(*,*) ' '
              WRITE(*,*) 'Latitudinal coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius    (km)         = ', R
              WRITE(*,FMT1) '  Longitude (deg)        = ', LON/RPD()
              WRITE(*,FMT1) '  Latitude  (deg)        = ', LAT/RPD()
              WRITE(*,*) ' '
              WRITE(*,*) 'Latitudinal velocity:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  d Radius/dt    (km/s)  = ', LATVEL(1)
              WRITE(*,FMT1) '  d Longitude/dt (deg/s) = ',
             .                                         LATVEL(2)/RPD()
              WRITE(*,FMT1) '  d Latitude/dt  (deg/s) = ',
             .                                         LATVEL(3)/RPD()
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates from inverse ' //
             .           'mapping:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X (km)                 = ', RECTAN(1)
              WRITE(*,FMT1) '  Y (km)                 = ', RECTAN(2)
              WRITE(*,FMT1) '  Z (km)                 = ', RECTAN(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular velocity from inverse mapping:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  dX/dt (km/s)           = ', DRECTN(1)
              WRITE(*,FMT1) '  dY/dt (km/s)           = ', DRECTN(2)
              WRITE(*,FMT1) '  dZ/dt (km/s)           = ', DRECTN(3)
              WRITE(*,*) ' '
              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Rectangular coordinates:

          X (km)                 =    -0.76096183E+08
          Y (km)                 =     0.32436380E+09
          Z (km)                 =     0.47470484E+08

         Rectangular velocity:

          dX/dt (km/s)           =     0.22952075E+05
          dY/dt (km/s)           =     0.53760111E+04
          dZ/dt (km/s)           =    -0.20881149E+02

         Latitudinal coordinates:

          Radius    (km)         =     0.33653522E+09
          Longitude (deg)        =     0.10320290E+03
          Latitude  (deg)        =     0.81089866E+01

         Latitudinal velocity:

          d Radius/dt    (km/s)  =    -0.11211601E+02
          d Longitude/dt (deg/s) =    -0.40539288E-02
          d Latitude/dt  (deg/s) =    -0.33189930E-05

         Rectangular coordinates from inverse mapping:

          X (km)                 =    -0.76096183E+08
          Y (km)                 =     0.32436380E+09
          Z (km)                 =     0.47470484E+08

         Rectangular velocity from inverse mapping:

          dX/dt (km/s)           =     0.22952075E+05
          dY/dt (km/s)           =     0.53760111E+04
          dZ/dt (km/s)           =    -0.20881149E+02

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.0.1, 26-OCT-2021 (JDR)

        Edited the header to comply with NAIF standard.
        Added complete code example.

    SPICELIB Version 1.0.0, 16-JUL-2001 (WLT)
Fri Dec 31 18:36:14 2021