drdgeo |
Table of contents
ProcedureDRDGEO ( Derivative of rectangular w.r.t. geodetic ) SUBROUTINE DRDGEO ( LON, LAT, ALT, RE, F, JACOBI ) AbstractCompute the Jacobian matrix of the transformation from geodetic to rectangular coordinates. Required_ReadingNone. KeywordsCOORDINATES DERIVATIVES MATRIX DeclarationsIMPLICIT NONE DOUBLE PRECISION LON DOUBLE PRECISION LAT DOUBLE PRECISION ALT DOUBLE PRECISION RE DOUBLE PRECISION F DOUBLE PRECISION JACOBI ( 3, 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- LON I Geodetic longitude of point (radians). LAT I Geodetic latitude of point (radians). ALT I Altitude of point above the reference spheroid. RE I Equatorial radius of the reference spheroid. F I Flattening coefficient. JACOBI O Matrix of partial derivatives. Detailed_InputLON is the geodetic longitude of point (radians). LAT is the geodetic latitude of point (radians). ALT is the altitude of point above the reference spheroid. RE is the equatorial radius of the reference spheroid. F is the flattening coefficient = (RE-RP) / RE, where RP is the polar radius of the spheroid. (More importantly RP = RE*(1-F).) Detailed_OutputJACOBI is the matrix of partial derivatives of the conversion between geodetic and rectangular coordinates. It has the form .- -. | DX/DLON DX/DLAT DX/DALT | | DY/DLON DY/DLAT DY/DALT | | DZ/DLON DZ/DLAT DZ/DALT | `- -' evaluated at the input values of LON, LAT and ALT. The formulae for computing X, Y, and Z from geodetic coordinates are given below. X = [ALT + RE/G(LAT,F)]*COS(LON)*COS(LAT) Y = [ALT + RE/G(LAT,F)]*SIN(LON)*COS(LAT) Z = [ALT + RE*(1-F)**2/G(LAT,F)]* SIN(LAT) where RE is the polar radius of the reference spheroid. F is the flattening factor (the polar radius is obtained by multiplying the equatorial radius by 1-F). G( LAT, F ) is given by sqrt ( cos(lat)**2 + (1-f)**2 * sin(lat)**2 ) ParametersNone. Exceptions1) If the flattening coefficient is greater than or equal to one, the error SPICE(VALUEOUTOFRANGE) is signaled. 2) If the equatorial radius is non-positive, the error SPICE(BADRADIUS) is signaled. FilesNone. ParticularsIt is often convenient to describe the motion of an object in the geodetic coordinate system. However, when performing vector computations its hard to beat rectangular coordinates. To transform states given with respect to geodetic coordinates to states with respect to rectangular coordinates, one makes use of the Jacobian of the transformation between the two systems. Given a state in geodetic coordinates ( lon, lat, alt, dlon, dlat, dalt ) the velocity in rectangular coordinates is given by the matrix equation: t | t (dx, dy, dz) = JACOBI| * (dlon, dlat, dalt) |(lon,lat,alt) This routine computes the matrix | JACOBI| |(lon,lat,alt) ExamplesThe numerical results shown for this example may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Find the geodetic state of the earth as seen from Mars in the IAU_MARS reference frame at January 1, 2005 TDB. Map this state back to rectangular coordinates as a check. Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: drdgeo_ex1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de421.bsp Planetary ephemeris pck00010.tpc Planet orientation and radii naif0009.tls Leapseconds \begindata KERNELS_TO_LOAD = ( 'de421.bsp', 'pck00010.tpc', 'naif0009.tls' ) \begintext End of meta-kernel Example code begins here. PROGRAM DRDGEO_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION RPD C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,E18.8)' ) C C Local variables C DOUBLE PRECISION ALT DOUBLE PRECISION DRECTN ( 3 ) DOUBLE PRECISION ET DOUBLE PRECISION F DOUBLE PRECISION JACOBI ( 3, 3 ) DOUBLE PRECISION LAT DOUBLE PRECISION LON DOUBLE PRECISION LT DOUBLE PRECISION GEOVEL ( 3 ) DOUBLE PRECISION RADII ( 3 ) DOUBLE PRECISION RE DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION RP DOUBLE PRECISION STATE ( 6 ) INTEGER N C C Load SPK, PCK, and LSK kernels, use a meta kernel for C convenience. C CALL FURNSH ( 'drdgeo_ex1.tm' ) C C Look up the radii for Mars. Although we C omit it here, we could first call BADKPV C to make sure the variable BODY499_RADII C has three elements and numeric data type. C If the variable is not present in the kernel C pool, BODVRD will signal an error. C CALL BODVRD ( 'MARS', 'RADII', 3, N, RADII ) C C Compute flattening coefficient. C RE = RADII(1) RP = RADII(3) F = ( RE - RP ) / RE C C Look up the apparent state of earth as seen from Mars C at January 1, 2005 TDB, relative to the IAU_MARS C reference frame. C CALL STR2ET ( 'January 1, 2005 TDB', ET ) CALL SPKEZR ( 'Earth', ET, 'IAU_MARS', 'LT+S', . 'Mars', STATE, LT ) C C Convert position to geodetic coordinates. C CALL RECGEO ( STATE, RE, F, LON, LAT, ALT ) C C Convert velocity to geodetic coordinates. C CALL DGEODR ( STATE(1), STATE(2), STATE(3), . RE, F, JACOBI ) CALL MXV ( JACOBI, STATE(4), GEOVEL ) C C As a check, convert the geodetic state back to C rectangular coordinates. C CALL GEOREC ( LON, LAT, ALT, RE, F, RECTAN ) CALL DRDGEO ( LON, LAT, ALT, RE, F, JACOBI ) CALL MXV ( JACOBI, GEOVEL, DRECTN ) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km) = ', STATE(1) WRITE(*,FMT1) ' Y (km) = ', STATE(2) WRITE(*,FMT1) ' Z (km) = ', STATE(3) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular velocity:' WRITE(*,*) ' ' WRITE(*,FMT1) ' dX/dt (km/s) = ', STATE(4) WRITE(*,FMT1) ' dY/dt (km/s) = ', STATE(5) WRITE(*,FMT1) ' dZ/dt (km/s) = ', STATE(6) WRITE(*,*) ' ' WRITE(*,*) 'Ellipsoid shape parameters: ' WRITE(*,*) ' ' WRITE(*,FMT1) ' Equatorial radius (km) = ', RE WRITE(*,FMT1) ' Polar radius (km) = ', RP WRITE(*,FMT1) ' Flattening coefficient = ', F WRITE(*,*) ' ' WRITE(*,*) 'Geodetic coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Longitude (deg) = ', LON / RPD() WRITE(*,FMT1) ' Latitude (deg) = ', LAT / RPD() WRITE(*,FMT1) ' Altitude (km) = ', ALT WRITE(*,*) ' ' WRITE(*,*) 'Geodetic velocity:' WRITE(*,*) ' ' WRITE(*,FMT1) ' d Longitude/dt (deg/s) = ', . GEOVEL(1)/RPD() WRITE(*,FMT1) ' d Latitude/dt (deg/s) = ', . GEOVEL(2)/RPD() WRITE(*,FMT1) ' d Altitude/dt (km/s) = ', GEOVEL(3) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates from inverse ' // . 'mapping:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km) = ', RECTAN(1) WRITE(*,FMT1) ' Y (km) = ', RECTAN(2) WRITE(*,FMT1) ' Z (km) = ', RECTAN(3) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular velocity from inverse mapping:' WRITE(*,*) ' ' WRITE(*,FMT1) ' dX/dt (km/s) = ', DRECTN(1) WRITE(*,FMT1) ' dY/dt (km/s) = ', DRECTN(2) WRITE(*,FMT1) ' dZ/dt (km/s) = ', DRECTN(3) WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Rectangular coordinates: X (km) = -0.76096183E+08 Y (km) = 0.32436380E+09 Z (km) = 0.47470484E+08 Rectangular velocity: dX/dt (km/s) = 0.22952075E+05 dY/dt (km/s) = 0.53760111E+04 dZ/dt (km/s) = -0.20881149E+02 Ellipsoid shape parameters: Equatorial radius (km) = 0.33961900E+04 Polar radius (km) = 0.33762000E+04 Flattening coefficient = 0.58860076E-02 Geodetic coordinates: Longitude (deg) = 0.10320290E+03 Latitude (deg) = 0.81089876E+01 Altitude (km) = 0.33653182E+09 Geodetic velocity: d Longitude/dt (deg/s) = -0.40539288E-02 d Latitude/dt (deg/s) = -0.33189934E-05 d Altitude/dt (km/s) = -0.11211601E+02 Rectangular coordinates from inverse mapping: X (km) = -0.76096183E+08 Y (km) = 0.32436380E+09 Z (km) = 0.47470484E+08 Rectangular velocity from inverse mapping: dX/dt (km/s) = 0.22952075E+05 dY/dt (km/s) = 0.53760111E+04 dZ/dt (km/s) = -0.20881149E+02 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionJ. Diaz del Rio (ODC Space) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 26-OCT-2021 (JDR) Changed the input argument name LONG to LON for consistency with other routines. Edited the header to comply with NAIF standard. Added complete code example. SPICELIB Version 1.0.0, 20-JUL-2001 (WLT) |
Fri Dec 31 18:36:14 2021