Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
recgeo

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     RECGEO ( Rectangular to geodetic )

     SUBROUTINE RECGEO ( RECTAN, RE, F,  LON, LAT, ALT )

Abstract

     Convert from rectangular coordinates to geodetic coordinates.

Required_Reading

     None.

Keywords

     CONVERSION
     COORDINATES

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION   RECTAN ( 3 )
     DOUBLE PRECISION   RE
     DOUBLE PRECISION   F
     DOUBLE PRECISION   LON
     DOUBLE PRECISION   LAT
     DOUBLE PRECISION   ALT

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     RECTAN     I   Rectangular coordinates of a point.
     RE         I   Equatorial radius of the reference spheroid.
     F          I   Flattening coefficient.
     LON        O   Geodetic longitude of the point (radians).
     LAT        O   Geodetic latitude  of the point (radians).
     ALT        O   Altitude of the point above reference spheroid.

Detailed_Input

     RECTAN   are the rectangular coordinates of a point. RECTAN
              must be in the same units as RE.

     RE       is the equatorial radius of a reference spheroid. This
              spheroid is a volume of revolution: its horizontal cross
              sections are circular. The shape of the spheroid is
              defined by an equatorial radius RE and a polar radius RP.
              RE must be in the same units as RECTAN.

     F        is the flattening coefficient = (RE-RP) / RE, where RP is
              the polar radius of the spheroid.

Detailed_Output

     LON      is the geodetic longitude of the input point. This is the
              angle between the prime meridian and the meridian
              containing RECTAN. The direction of increasing longitude
              is from the +X axis towards the +Y axis.

              LON is output in radians. The range of LON is [-pi, pi].

     LAT      is the geodetic latitude of the input point. For a point
              P on the reference spheroid, this is the angle between
              the XY plane and the outward normal vector at P. For a
              point P not on the reference spheroid, the geodetic
              latitude is that of the closest point to P on the
              spheroid.

              LAT is output in radians. The range of LAT is
              [-pi/2, pi/2].

     ALT      is the altitude of point above the reference spheroid.

              The units associated with ALT are those associated with
              the inputs RECTAN and RE.

Parameters

     None.

Exceptions

     1)  If the equatorial radius is non-positive, the error
         SPICE(VALUEOUTOFRANGE) is signaled.

     2)  If the flattening coefficient is greater than or equal to
         one, the error SPICE(VALUEOUTOFRANGE) is signaled.

     3)  For points inside the reference ellipsoid, the nearest
         point on the ellipsoid to RECTAN may not be unique, so
         latitude may not be well-defined.

Files

     None.

Particulars

     Given the body-fixed rectangular coordinates of a point, and the
     constants describing the reference spheroid,  this routine
     returns the geodetic coordinates of the point. The body-fixed
     rectangular frame is that having the x-axis pass through the
     0 degree latitude 0 degree longitude point. The y-axis passes
     through the 0 degree latitude 90 degree longitude. The z-axis
     passes through the 90 degree latitude point. For some bodies
     this coordinate system may not be a right-handed coordinate
     system.

Examples

     The numerical results shown for these examples may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Find the geodetic coordinates of the point having Earth
        rectangular coordinates:

           X (km) =  -2541.748162
           Y (km) =   4780.333036
           Z (km) =   3360.428190

        Use the PCK kernel below to load the required triaxial
        ellipsoidal shape model and orientation data for the Earth.

           pck00010.tpc


        Example code begins here.


              PROGRAM RECGEO_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local variables
        C
              DOUBLE PRECISION      ALT
              DOUBLE PRECISION      F
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      RADII  ( 3 )
              DOUBLE PRECISION      RE
              DOUBLE PRECISION      RECTAN ( 3 )
              DOUBLE PRECISION      RP

              INTEGER               N

        C
        C     Load a PCK file containing a triaxial
        C     ellipsoidal shape model and orientation
        C     data for the Earth.
        C
              CALL FURNSH ( 'pck00010.tpc' )

        C
        C     Retrieve the triaxial radii of the Earth
        C
              CALL BODVRD ( 'EARTH', 'RADII', 3, N, RADII )

        C
        C     Compute flattening coefficient.
        C
              RE  =  RADII(1)
              RP  =  RADII(3)
              F   =  ( RE - RP ) / RE

        C
        C     Set a body-fixed position.
        C
              RECTAN(1) =  -2541.748162D0
              RECTAN(2) =   4780.333036D0
              RECTAN(3) =   3360.428190D0

        C
        C     Do the conversion. Output angles in degrees.
        C
              CALL RECGEO( RECTAN, RADII(1), F, LON, LAT, ALT )

              WRITE (*,*) 'Rectangular coordinates in km (x, y, z)'
              WRITE (*,'(A,3F14.6)') ' ', RECTAN
              WRITE (*,*) 'Geodetic coordinates in deg and '
             . //         'km (lon, lat, alt)'
              WRITE (*,'(A,3F14.6)') ' ', LON * DPR(), LAT * DPR(), ALT

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Rectangular coordinates in km (x, y, z)
           -2541.748162   4780.333036   3360.428190
         Geodetic coordinates in deg and km (lon, lat, alt)
             118.000000     31.999957      0.001916


     2) Create a table showing a variety of rectangular coordinates
        and the corresponding Earth geodetic coordinates. The
        values are computed using the equatorial radius of the Clark
        66 spheroid and the Clark 66 flattening factor:

           radius: 6378.2064
           flattening factor: 1./294.9787

        Note: the values shown above may not be current or suitable
              for your application.


        Corresponding rectangular and geodetic coordinates are
        listed to three decimal places. Output angles are in degrees.

        Example code begins here.


              PROGRAM RECGEO_EX2
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters.
        C
              INTEGER               NREC
              PARAMETER           ( NREC = 11 )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      ALT
              DOUBLE PRECISION      CLARKR
              DOUBLE PRECISION      CLARKF
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      RECTAN ( 3, NREC )

              INTEGER               I
              INTEGER               J

        C
        C     Define the input rectangular coordinates.
        C
              DATA                 RECTAN /
             .                  0.D0,         0.D0,         0.D0,
             .               6378.2064D0,     0.D0,         0.D0,
             .                  0.D0,      6378.2064D0,     0.D0,
             .                  0.D0,         0.D0,      6378.2064D0,
             .              -6378.2064D0,     0.D0,         0.D0,
             .                  0.D0,     -6378.2064D0,     0.D0,
             .                  0.D0,         0.D0,     -6378.2064D0,
             .               6378.2064D0,  6378.2064D0,     0.D0,
             .               6378.2064D0,     0.D0,      6378.2064D0,
             .                  0.D0,      6378.2064D0,  6378.2064D0,
             .               6378.2064D0,  6378.2064D0,  6378.2064D0 /

        C
        C     Using the equatorial radius of the Clark66 spheroid
        C     (CLARKR = 6378.2064 km) and the Clark 66 flattening
        C     factor (CLARKF = 1.0 / 294.9787 ) convert from
        C     body fixed rectangular coordinates.
        C
              CLARKR = 6378.2064D0
              CLARKF = 1.0D0 / 294.9787D0

        C
        C     Print the banner.
        C
              WRITE(*,*) ' RECTAN(1)  RECTAN(2)  RECTAN(3) '
             . //        '   LON      LAT       ALT'
              WRITE(*,*) ' ---------  ---------  --------- '
             . //        ' -------  -------  ---------'

        C
        C     Do the conversion. Output angles in degrees.
        C
              DO I = 1, NREC

                 CALL RECGEO( RECTAN(1,I), CLARKR, CLARKF,
             .                LON,         LAT,    ALT    )

                 WRITE (*,'(3F11.3,2F9.3,F11.3)')
             .             ( RECTAN(J,I), J=1,3 ), LON * DPR(),
             .             LAT * DPR(), ALT

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


          RECTAN(1)  RECTAN(2)  RECTAN(3)    LON      LAT       ALT
          ---------  ---------  ---------  -------  -------  ---------
              0.000      0.000      0.000    0.000   90.000  -6356.584
           6378.206      0.000      0.000    0.000    0.000      0.000
              0.000   6378.206      0.000   90.000    0.000      0.000
              0.000      0.000   6378.206    0.000   90.000     21.623
          -6378.206      0.000      0.000  180.000    0.000      0.000
              0.000  -6378.206      0.000  -90.000    0.000      0.000
              0.000      0.000  -6378.206    0.000  -90.000     21.623
           6378.206   6378.206      0.000   45.000    0.000   2641.940
           6378.206      0.000   6378.206    0.000   45.137   2652.768
              0.000   6378.206   6378.206   90.000   45.137   2652.768
           6378.206   6378.206   6378.206   45.000   35.370   4676.389

Restrictions

     None.

Literature_References

     [1]  R. Bate, D. Mueller, and J. White, "Fundamentals of
          Astrodynamics," Dover Publications Inc., 1971.

Author_and_Institution

     C.H. Acton         (JPL)
     N.J. Bachman       (JPL)
     J. Diaz del Rio    (ODC Space)
     B.V. Semenov       (JPL)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.2.0, 01-OCT-2021 (JDR) (NJB)

        Changed the output argument name LONG to LON for consistency
        with other routines.

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Added complete
        code examples.

    SPICELIB Version 1.1.0, 03-AUG-2016 (BVS) (NJB)

        Re-implemented derivation of longitude to improve
        accuracy.

        Minor header edits.

    SPICELIB Version 1.0.3, 02-JUL-2007 (NJB)

        In $Examples section of header, description of right-hand
        table was updated to use correct names of columns. Term
        "bodyfixed" is now hyphenated.

    SPICELIB Version 1.0.2, 30-JUL-2003 (NJB) (CHA)

        Various header changes were made to improve clarity. Some
        minor header corrections were made.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT)
Fri Dec 31 18:36:42 2021