georec |
Table of contents
ProcedureGEOREC ( Geodetic to rectangular coordinates ) SUBROUTINE GEOREC ( LON, LAT, ALT, RE, F, RECTAN ) AbstractConvert geodetic coordinates to rectangular coordinates. Required_ReadingNone. KeywordsCONVERSION COORDINATES DeclarationsIMPLICIT NONE DOUBLE PRECISION LON DOUBLE PRECISION LAT DOUBLE PRECISION ALT DOUBLE PRECISION RE DOUBLE PRECISION F DOUBLE PRECISION RECTAN ( 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- LON I Geodetic longitude of point (radians). LAT I Geodetic latitude of point (radians). ALT I Altitude of point above the reference spheroid. RE I Equatorial radius of the reference spheroid. F I Flattening coefficient. RECTAN O Rectangular coordinates of point. Detailed_InputLON is the geodetic longitude of the input point. This is the angle between the prime meridian and the meridian containing RECTAN. The direction of increasing longitude is from the +X axis towards the +Y axis. Longitude is measured in radians. On input, the range of longitude is unrestricted. LAT is the geodetic latitude of the input point. For a point P on the reference spheroid, this is the angle between the XY plane and the outward normal vector at P. For a point P not on the reference spheroid, the geodetic latitude is that of the closest point to P on the spheroid. Latitude is measured in radians. On input, the range of latitude is unrestricted. ALT is the altitude of point above the reference spheroid. ALT must be in the same units as RE. RE is the equatorial radius of a reference spheroid. This spheroid is a volume of revolution: its horizontal cross sections are circular. The shape of the spheroid is defined by an equatorial radius RE and a polar radius RP. RE must be in the same units as ALT. F is the flattening coefficient = (RE-RP) / RE, where RP is the polar radius of the spheroid. Detailed_OutputRECTAN are the rectangular coordinates of a point. The units associated with RECTAN are those associated with the inputs ALT and RE. ParametersNone. Exceptions1) If the flattening coefficient is greater than or equal to one, the error SPICE(VALUEOUTOFRANGE) is signaled. 2) If the equatorial radius is less than or equal to zero, the error SPICE(VALUEOUTOFRANGE) is signaled. FilesNone. ParticularsGiven the geodetic coordinates of a point, and the constants describing the reference spheroid, this routine returns the bodyfixed rectangular coordinates of the point. The bodyfixed rectangular frame is that having the x-axis pass through the 0 degree latitude 0 degree longitude point. The y-axis passes through the 0 degree latitude 90 degree longitude. The z-axis passes through the 90 degree latitude point. For some bodies this coordinate system may not be a right-handed coordinate system. ExamplesThis routine can be used to convert body fixed geodetic coordinates (such as the used for United States Geological Survey topographic maps) to bodyfixed rectangular coordinates such as the Satellite Tracking and Data Network of 1973. 1) Find the rectangular coordinates of the point having Earth geodetic coordinates: LON (deg) = 118.0 LAT (deg) = 32.0 ALT (km) = 0.0 Use the PCK kernel below to load the required triaxial ellipsoidal shape model and orientation data for the Earth. pck00010.tpc Example code begins here. PROGRAM GEOREC_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR DOUBLE PRECISION RPD C C Local variables C DOUBLE PRECISION ALT DOUBLE PRECISION F DOUBLE PRECISION LAT DOUBLE PRECISION LON DOUBLE PRECISION RADII ( 3 ) DOUBLE PRECISION RE DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION RP INTEGER N C C Load a PCK file containing a triaxial C ellipsoidal shape model and orientation C data for the Earth. C CALL FURNSH ( 'pck00010.tpc' ) C C Retrieve the triaxial radii of the Earth C CALL BODVRD ( 'EARTH', 'RADII', 3, N, RADII ) C C Compute flattening coefficient. C RE = RADII(1) RP = RADII(3) F = ( RE - RP ) / RE C C Set a geodetic position. C LON = 118.D0 * RPD() LAT = 30.D0 * RPD() ALT = 0.D0 C C Do the conversion. C CALL GEOREC( LON, LAT, ALT, RADII(1), F, RECTAN ) WRITE (*,*) 'Geodetic coordinates in deg and ' . // 'km (lon, lat, alt)' WRITE (*,'(A,3F14.6)') ' ', LON * DPR(), LAT * DPR(), ALT WRITE (*,*) 'Rectangular coordinates in km (x, y, z)' WRITE (*,'(A,3F14.6)') ' ', RECTAN END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Geodetic coordinates in deg and km (lon, lat, alt) 118.000000 30.000000 0.000000 Rectangular coordinates in km (x, y, z) -2595.359123 4881.160589 3170.373523 2) Create a table showing a variety of rectangular coordinates and the corresponding Earth geodetic coordinates. The values are computed using the equatorial radius of the Clark 66 spheroid and the Clark 66 flattening factor: radius: 6378.2064 flattening factor: 1./294.9787 Note: the values shown above may not be current or suitable for your application. Corresponding rectangular and geodetic coordinates are listed to three decimal places. Input angles are in degrees. Example code begins here. PROGRAM GEOREC_EX2 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION RPD C C Local parameters. C INTEGER NREC PARAMETER ( NREC = 11 ) C C Local variables. C DOUBLE PRECISION ALT ( NREC ) DOUBLE PRECISION CLARKR DOUBLE PRECISION CLARKF DOUBLE PRECISION LAT ( NREC ) DOUBLE PRECISION LON ( NREC ) DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION RLAT DOUBLE PRECISION RLON INTEGER I C C Define the input geodetic coordinates. Angles in C degrees. C DATA LON / 0.D0, 0.D0, 90.D0, . 0.D0, 180.D0, -90.D0, . 0.D0, 45.D0, 0.D0, . 90.D0, 45.D0 / DATA LAT / 90.D0, 0.D0, 0.D0, . 90.D0, 0.D0, 0.D0, . -90.D0, 0.D0, 88.707D0, . 88.707D0, 88.1713D0 / DATA ALT / -6356.5838D0, 0.D0, . 0.D0, 0.D0, 0.D0, . 0.D0, 0.D0, 0.D0, . -6355.5725D0, -6355.5725D0, -6355.5612D0 / C C Using the equatorial radius of the Clark66 spheroid C (CLARKR = 6378.2064 km) and the Clark 66 flattening C factor (CLARKF = 1.0 / 294.9787 ) convert from C body fixed rectangular coordinates. C CLARKR = 6378.2064D0 CLARKF = 1.0D0 / 294.9787D0 C C Print the banner. C WRITE(*,*) ' LON LAT ALT ' . // ' RECTAN(1) RECTAN(2) RECTAN(3)' WRITE(*,*) ' ------- ------- --------- ' . // ' --------- --------- ---------' C C Do the conversion. C DO I = 1, NREC RLON = LON(I) * RPD() RLAT = LAT(I) * RPD() CALL GEOREC( RLON, RLAT, ALT(I), . CLARKR, CLARKF, RECTAN ) WRITE (*,'(2F9.3,F11.3,3F11.3)') . LON(I), LAT(I), ALT(I), RECTAN END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: LON LAT ALT RECTAN(1) RECTAN(2) RECTAN(3) ------- ------- --------- --------- --------- --------- 0.000 90.000 -6356.584 0.000 0.000 0.000 0.000 0.000 0.000 6378.206 0.000 0.000 90.000 0.000 0.000 0.000 6378.206 0.000 0.000 90.000 0.000 0.000 0.000 6356.584 180.000 0.000 0.000 -6378.206 0.000 0.000 -90.000 0.000 0.000 0.000 -6378.206 0.000 0.000 -90.000 0.000 0.000 0.000 -6356.584 45.000 0.000 0.000 4510.073 4510.073 0.000 0.000 88.707 -6355.573 1.000 0.000 1.000 90.000 88.707 -6355.573 0.000 1.000 1.000 45.000 88.171 -6355.561 1.000 1.000 1.000 RestrictionsNone. Literature_References[1] R. Bate, D. Mueller, and J. White, "Fundamentals of Astrodynamics," Dover Publications Inc., 1971. Author_and_InstitutionC.H. Acton (JPL) N.J. Bachman (JPL) J. Diaz del Rio (ODC Space) H.A. Neilan (JPL) B.V. Semenov (JPL) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 01-OCT-2021 (JDR) (NJB) Changed the input argument name LONG to LON for consistency with other routines. Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Added complete code examples. SPICELIB Version 1.0.3, 26-JUL-2016 (BVS) Minor headers edits. SPICELIB Version 1.0.2, 29-JUL-2003 (NJB) (CHA) Various header changes were made to improve clarity. Some minor header corrections were made. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 31-JAN-1990 (WLT) (HAN) |
Fri Dec 31 18:36:23 2021