Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
drdazl

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     DRDAZL ( Derivative of rectangular w.r.t. AZ/EL )

     SUBROUTINE DRDAZL ( RANGE, AZ, EL, AZCCW, ELPLSZ, JACOBI )

Abstract

     Compute the Jacobian matrix of the transformation from
     azimuth/elevation to rectangular coordinates.

Required_Reading

     None.

Keywords

     COORDINATES
     DERIVATIVES
     MATRIX

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION      RANGE
     DOUBLE PRECISION      AZ
     DOUBLE PRECISION      EL
     LOGICAL               AZCCW
     LOGICAL               ELPLSZ
     DOUBLE PRECISION      JACOBI ( 3, 3 )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     RANGE      I   Distance of a point from the origin.
     AZ         I   Azimuth of input point in radians.
     EL         I   Elevation of input point in radians.
     AZCCW      I   Flag indicating how azimuth is measured.
     ELPLSZ     I   Flag indicating how elevation is measured.
     JACOBI     O   Matrix of partial derivatives.

Detailed_Input

     RANGE    is the distance from the origin of the input point
              specified by RANGE, AZ, and EL.

              Negative values for RANGE are not allowed.

              Units are arbitrary and are considered to match those
              of the rectangular coordinate system associated with the
              output matrix JACOBI.

     AZ       is the azimuth of the point. This is the angle between
              the projection onto the XY plane of the vector from
              the origin to the point and the +X axis of the
              reference frame. AZ is zero at the +X axis.

              The way azimuth is measured depends on the value of
              the logical flag AZCCW. See the description of the
              argument AZCCW for details.

              The range (i.e., the set of allowed values) of AZ is
              unrestricted. See the $Exceptions section for a
              discussion on the AZ range.

              Units are radians.

     EL       is the elevation of the point. This is the angle
              between the vector from the origin to the point and
              the XY plane. EL is zero at the XY plane.

              The way elevation is measured depends on the value of
              the logical flag ELPLSZ. See the description of the
              argument ELPLSZ for details.

              The range (i.e., the set of allowed values) of EL is
              [-pi/2, pi/2], but no error checking is done to ensure
              that EL is within this range. See the $Exceptions
              section for a discussion on the EL range.

              Units are radians.

     AZCCW    is a flag indicating how the azimuth is measured.

              If AZCCW is .TRUE., the azimuth increases in the
              counterclockwise direction; otherwise AZ increases
              in the clockwise direction.

     ELPLSZ   if a flag indicating how the elevation is measured.

              If ELPLSZ is .TRUE., the elevation increases from
              the XY plane toward +Z; otherwise toward -Z.

Detailed_Output

     JACOBI   is the matrix of partial derivatives of the
              transformation from azimuth/elevation to rectangular
              coordinates. It has the form

                 .-                                  -.
                 |  DX/DRANGE     DX/DAZ     DX/DEL   |
                 |                                    |
                 |  DY/DRANGE     DY/DAZ     DY/DEL   |
                 |                                    |
                 |  DZ/DRANGE     DZ/DAZ     DZ/DEL   |
                 `-                                  -'

              evaluated at the input values of RANGE, AZ and EL.

              X, Y, and Z are given by the familiar formulae

                 X = RANGE * COS( AZ )          * COS( EL )
                 Y = RANGE * SIN( AZSNSE * AZ ) * COS( EL )
                 Z = RANGE * SIN( ELDIR  * EL )

              where AZSNSE is +1 when AZCCW is .TRUE. and -1
              otherwise, and ELDIR is +1 when ELPLSZ is .TRUE.
              and -1 otherwise.

Parameters

     None.

Exceptions

     1)  If the value of the input parameter RANGE is negative,
         the error SPICE(VALUEOUTOFRANGE) is signaled.

     2)  If the value of the input argument EL is outside the
         range [-pi/2, pi/2], the results may not be as
         expected.

     3)  If the value of the input argument AZ is outside the
         range [0, 2*pi], the value will be mapped to a value
         inside the range that differs from the input value by an
         integer multiple of 2*pi.

Files

     None.

Particulars

     It is often convenient to describe the motion of an object
     in azimuth/elevation coordinates. It is also convenient to
     manipulate vectors associated with the object in rectangular
     coordinates.

     The transformation of a azimuth/elevation state into an
     equivalent rectangular state makes use of the Jacobian matrix
     of the transformation between the two systems.

     Given a state in latitudinal coordinates,

        ( r, az, el, dr, daz, del )

     the velocity in rectangular coordinates is given by the matrix
     equation
                    t          |                             t
        (dx, dy, dz)   = JACOBI|             * (dr, daz, del)
                               |(r,az,el)

     This routine computes the matrix

              |
        JACOBI|
              |(r,az,el)

     In the azimuth/elevation coordinate system, several conventions
     exist on how azimuth and elevation are measured. Using the AZCCW
     and ELPLSZ flags, users indicate which conventions shall be used.
     See the descriptions of these input arguments for details.

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Find the azimuth/elevation state of Venus as seen from the
        DSS-14 station at a given epoch. Map this state back to
        rectangular coordinates as a check.

        Task description
        ================

        In this example, we will obtain the apparent state of Venus as
        seen from the DSS-14 station in the DSS-14 topocentric
        reference frame. We will use a station frames kernel and
        transform the resulting rectangular coordinates to azimuth,
        elevation and range and its derivatives using RECAZL and
        DAZLDR.

        We will map this state back to rectangular coordinates using
        AZLREC and DRDAZL.

        In order to introduce the usage of the logical flags AZCCW
        and ELPLSZ, we will request the azimuth to be measured
        clockwise and the elevation positive towards +Z
        axis of the DSS-14_TOPO reference frame.

        Kernels
        =======

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: drdazl_ex1.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                        Contents
              ---------                        --------
              de430.bsp                        Planetary ephemeris
              naif0011.tls                     Leapseconds
              earth_720101_070426.bpc          Earth historical
                                                  binary PCK
              earthstns_itrf93_050714.bsp      DSN station SPK
              earth_topo_050714.tf             DSN station FK

           \begindata

           KERNELS_TO_LOAD = ( 'de430.bsp',
                               'naif0011.tls',
                               'earth_720101_070426.bpc',
                               'earthstns_itrf93_050714.bsp',
                               'earth_topo_050714.tf'         )

           \begintext

           End of meta-kernel.


        Example code begins here.


              PROGRAM DRDAZL_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1   = '(A,F20.8)' )

              CHARACTER*(*)         META
              PARAMETER           ( META   = 'drdazl_ex1.tm' )

              INTEGER               BDNMLN
              PARAMETER           ( BDNMLN = 36 )

              INTEGER               CORLEN
              PARAMETER           ( CORLEN = 10 )

              INTEGER               FRNMLN
              PARAMETER           ( FRNMLN = 32 )

              INTEGER               TIMLEN
              PARAMETER           ( TIMLEN = 40 )

        C
        C     Local variables
        C
              CHARACTER*(CORLEN)    ABCORR
              CHARACTER*(BDNMLN)    OBS
              CHARACTER*(TIMLEN)    OBSTIM
              CHARACTER*(FRNMLN)    REF
              CHARACTER*(BDNMLN)    TARGET

              DOUBLE PRECISION      AZ
              DOUBLE PRECISION      AZLVEL ( 3    )
              DOUBLE PRECISION      DRECTN ( 3    )
              DOUBLE PRECISION      EL
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      JACOBI ( 3, 3 )
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      STATE  ( 6    )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      RECTAN ( 3    )

              LOGICAL               AZCCW
              LOGICAL               ELPLSZ

        C
        C     Load SPICE kernels.
        C
              CALL FURNSH ( META )

        C
        C     Convert the observation time to seconds past J2000 TDB.
        C
              OBSTIM = '2003 OCT 13 06:00:00.000000 UTC'

              CALL STR2ET ( OBSTIM, ET )

        C
        C     Set the target, observer, observer frame, and
        C     aberration corrections.
        C
              TARGET = 'VENUS'
              OBS    = 'DSS-14'
              REF    = 'DSS-14_TOPO'
              ABCORR = 'CN+S'

        C
        C     Compute the observer-target state.
        C
              CALL SPKEZR ( TARGET, ET, REF, ABCORR, OBS,
             .              STATE,  LT                   )

        C
        C     Convert position to azimuth/elevation coordinates,
        C     with azimuth increasing clockwise and elevation
        C     positive towards +Z axis of the DSS-14_TOPO
        C     reference frame
        C
              AZCCW  = .FALSE.
              ELPLSZ = .TRUE.

              CALL RECAZL ( STATE, AZCCW, ELPLSZ, R, AZ, EL )

        C
        C     Convert velocity to azimuth/elevation coordinates.
        C
              CALL DAZLDR ( STATE(1), STATE(2), STATE(3),
             .              AZCCW,    ELPLSZ,   JACOBI   )

              CALL MXV ( JACOBI, STATE(4), AZLVEL )

        C
        C     As a check, convert the azimuth/elevation state back to
        C     rectangular coordinates.
        C
              CALL AZLREC ( R, AZ, EL, AZCCW, ELPLSZ, RECTAN )

              CALL DRDAZL ( R, AZ, EL, AZCCW, ELPLSZ, JACOBI )

              CALL MXV ( JACOBI, AZLVEL, DRECTN )

              WRITE(*,*)
              WRITE(*,'(A)') 'AZ/EL coordinates:'
              WRITE(*,*)
              WRITE(*,FMT1) '   Range      (km)        = ', R
              WRITE(*,FMT1) '   Azimuth    (deg)       = ', AZ * DPR()
              WRITE(*,FMT1) '   Elevation  (deg)       = ', EL * DPR()
              WRITE(*,*)
              WRITE(*,'(A)')    'AZ/EL velocity:'
              WRITE(*,*)
              WRITE(*,FMT1) '   d Range/dt     (km/s)  = ', AZLVEL(1)
              WRITE(*,FMT1) '   d Azimuth/dt   (deg/s) = ', AZLVEL(2)
             .                                             * DPR()
              WRITE(*,FMT1) '   d Elevation/dt (deg/s) = ', AZLVEL(3)
             .                                             * DPR()
              WRITE(*,*)
              WRITE(*,'(A)') 'Rectangular coordinates:'
              WRITE(*,*)
              WRITE(*,FMT1) '   X (km)                 = ', STATE(1)
              WRITE(*,FMT1) '   Y (km)                 = ', STATE(2)
              WRITE(*,FMT1) '   Z (km)                 = ', STATE(3)
              WRITE(*,*)
              WRITE(*,'(A)') 'Rectangular velocity:'
              WRITE(*,*)
              WRITE(*,FMT1) '   dX/dt (km/s)           = ', STATE(4)
              WRITE(*,FMT1) '   dY/dt (km/s)           = ', STATE(5)
              WRITE(*,FMT1) '   dZ/dt (km/s)           = ', STATE(6)
              WRITE(*,*)
              WRITE(*,'(A)') 'Rectangular coordinates from inverse '
             .    //         'mapping:'
              WRITE(*,*)
              WRITE(*,FMT1) '   X (km)                 = ', RECTAN(1)
              WRITE(*,FMT1) '   Y (km)                 = ', RECTAN(2)
              WRITE(*,FMT1) '   Z (km)                 = ', RECTAN(3)
              WRITE(*,*)
              WRITE(*,'(A)') 'Rectangular velocity from inverse '
             .    //         'mapping:'
              WRITE(*,*)
              WRITE(*,FMT1) '   dX/dt (km/s)           = ', DRECTN(1)
              WRITE(*,FMT1) '   dY/dt (km/s)           = ', DRECTN(2)
              WRITE(*,FMT1) '   dZ/dt (km/s)           = ', DRECTN(3)
              WRITE(*,*)

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


        AZ/EL coordinates:

           Range      (km)        =   245721478.99272084
           Azimuth    (deg)       =         294.48543372
           Elevation  (deg)       =         -48.94609726

        AZ/EL velocity:

           d Range/dt     (km/s)  =          -4.68189834
           d Azimuth/dt   (deg/s) =           0.00402256
           d Elevation/dt (deg/s) =          -0.00309156

        Rectangular coordinates:

           X (km)                 =    66886767.37916667
           Y (km)                 =   146868551.77222887
           Z (km)                 =  -185296611.10841590

        Rectangular velocity:

           dX/dt (km/s)           =        6166.04150307
           dY/dt (km/s)           =      -13797.77164550
           dZ/dt (km/s)           =       -8704.32385654

        Rectangular coordinates from inverse mapping:

           X (km)                 =    66886767.37916658
           Y (km)                 =   146868551.77222890
           Z (km)                 =  -185296611.10841590

        Rectangular velocity from inverse mapping:

           dX/dt (km/s)           =        6166.04150307
           dY/dt (km/s)           =      -13797.77164550
           dZ/dt (km/s)           =       -8704.32385654

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     N.J. Bachman       (JPL)
     J. Diaz del Rio    (ODC Space)

Version

    SPICELIB Version 1.0.0, 08-SEP-2021 (JDR) (NJB)
Fri Dec 31 18:36:14 2021