| dazldr |
|
Table of contents
Procedure
DAZLDR ( Derivative of AZ/EL w.r.t. rectangular )
SUBROUTINE DAZLDR ( X, Y, Z, AZCCW, ELPLSZ, JACOBI )
Abstract
Compute the Jacobian matrix of the transformation from
rectangular to azimuth/elevation coordinates.
Required_Reading
None.
Keywords
COORDINATES
DERIVATIVES
MATRIX
Declarations
IMPLICIT NONE
DOUBLE PRECISION X
DOUBLE PRECISION Y
DOUBLE PRECISION Z
LOGICAL AZCCW
LOGICAL ELPLSZ
DOUBLE PRECISION JACOBI ( 3, 3 )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
X I X-coordinate of point.
Y I Y-coordinate of point.
Z I Z-coordinate of point.
AZCCW I Flag indicating how azimuth is measured.
ELPLSZ I Flag indicating how elevation is measured.
JACOBI O Matrix of partial derivatives.
Detailed_Input
X,
Y,
Z are the rectangular coordinates of the point at
which the Jacobian matrix of the map from rectangular
to azimuth/elevation coordinates is desired.
AZCCW is a flag indicating how the azimuth is measured.
If AZCCW is .TRUE., the azimuth increases in the
counterclockwise direction; otherwise it increases
in the clockwise direction.
ELPLSZ is a flag indicating how the elevation is measured.
If ELPLSZ is .TRUE., the elevation increases from the
XY plane toward +Z; otherwise toward -Z.
Detailed_Output
JACOBI is the matrix of partial derivatives of the
transformation from rectangular to azimuth/elevation
coordinates. It has the form
.- -.
| dr/dx dr/dy dr/dz |
| daz/dx daz/dy daz/dz |
| del/dx del/dy del/dz |
`- -'
evaluated at the input values of X, Y, and Z.
Parameters
None.
Exceptions
1) If the input point is on the Z-axis ( X = 0 and Y = 0 ), the
Jacobian matrix is undefined and therefore, the error
SPICE(POINTONZAXIS) is signaled.
Files
None.
Particulars
When performing vector calculations with velocities it is
usually most convenient to work in rectangular coordinates.
However, once the vector manipulations have been performed
it is often desirable to convert the rectangular representations
into azimuth/elevation coordinates to gain insights about
phenomena in this coordinate system.
To transform rectangular velocities to derivatives of coordinates
in a azimuth/elevation coordinate system, one uses the Jacobian
matrix of the transformation between the two systems.
Given a state in rectangular coordinates
( x, y, z, dx, dy, dz )
the corresponding azimuth/elevation coordinate derivatives are
given by the matrix equation:
t | t
(dr, daz, del) = JACOBI| * (dx, dy, dz)
|(x,y,z)
This routine computes the matrix
|
JACOBI|
|(x, y, z)
In the azimuth/elevation coordinate system, several conventions
exist on how azimuth and elevation are measured. Using the AZCCW
and ELPLSZ flags, users indicate which conventions shall be used.
See the descriptions of these input arguments for details.
Examples
The numerical results shown for this example may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Find the azimuth/elevation state of Venus as seen from the
DSS-14 station at a given epoch. Map this state back to
rectangular coordinates as a check.
Task description
================
In this example, we will obtain the apparent state of Venus as
seen from the DSS-14 station in the DSS-14 topocentric
reference frame. We will use a station frames kernel and
transform the resulting rectangular coordinates to azimuth,
elevation and range and its derivatives using RECAZL and
DAZLDR.
We will map this state back to rectangular coordinates using
AZLREC and DRDAZL.
In order to introduce the usage of the logical flags AZCCW
and ELPLSZ, we will request the azimuth to be measured
clockwise and the elevation positive towards +Z
axis of the DSS-14_TOPO reference frame.
Kernels
=======
Use the meta-kernel shown below to load the required SPICE
kernels.
KPL/MK
File name: dazldr_ex1.tm
This meta-kernel is intended to support operation of SPICE
example programs. The kernels shown here should not be
assumed to contain adequate or correct versions of data
required by SPICE-based user applications.
In order for an application to use this meta-kernel, the
kernels referenced here must be present in the user's
current working directory.
The names and contents of the kernels referenced
by this meta-kernel are as follows:
File name Contents
--------- --------
de430.bsp Planetary ephemeris
naif0011.tls Leapseconds
earth_720101_070426.bpc Earth historical
binary PCK
earthstns_itrf93_050714.bsp DSN station SPK
earth_topo_050714.tf DSN station FK
\begindata
KERNELS_TO_LOAD = ( 'de430.bsp',
'naif0011.tls',
'earth_720101_070426.bpc',
'earthstns_itrf93_050714.bsp',
'earth_topo_050714.tf' )
\begintext
End of meta-kernel.
Example code begins here.
PROGRAM DAZLDR_EX1
IMPLICIT NONE
C
C SPICELIB functions
C
DOUBLE PRECISION DPR
C
C Local parameters
C
CHARACTER*(*) FMT1
PARAMETER ( FMT1 = '(A,F20.8)' )
CHARACTER*(*) META
PARAMETER ( META = 'dazldr_ex1.tm' )
INTEGER BDNMLN
PARAMETER ( BDNMLN = 36 )
INTEGER CORLEN
PARAMETER ( CORLEN = 10 )
INTEGER FRNMLN
PARAMETER ( FRNMLN = 32 )
INTEGER TIMLEN
PARAMETER ( TIMLEN = 40 )
C
C Local variables
C
CHARACTER*(CORLEN) ABCORR
CHARACTER*(BDNMLN) OBS
CHARACTER*(TIMLEN) OBSTIM
CHARACTER*(FRNMLN) REF
CHARACTER*(BDNMLN) TARGET
DOUBLE PRECISION AZ
DOUBLE PRECISION AZLVEL ( 3 )
DOUBLE PRECISION DRECTN ( 3 )
DOUBLE PRECISION EL
DOUBLE PRECISION ET
DOUBLE PRECISION JACOBI ( 3, 3 )
DOUBLE PRECISION LT
DOUBLE PRECISION STATE ( 6 )
DOUBLE PRECISION R
DOUBLE PRECISION RECTAN ( 3 )
LOGICAL AZCCW
LOGICAL ELPLSZ
C
C Load SPICE kernels.
C
CALL FURNSH ( META )
C
C Convert the observation time to seconds past J2000 TDB.
C
OBSTIM = '2003 OCT 13 06:00:00.000000 UTC'
CALL STR2ET ( OBSTIM, ET )
C
C Set the target, observer, observer frame, and
C aberration corrections.
C
TARGET = 'VENUS'
OBS = 'DSS-14'
REF = 'DSS-14_TOPO'
ABCORR = 'CN+S'
C
C Compute the observer-target state.
C
CALL SPKEZR ( TARGET, ET, REF, ABCORR, OBS,
. STATE, LT )
C
C Convert position to azimuth/elevation coordinates,
C with azimuth increasing clockwise and elevation
C positive towards +Z axis of the DSS-14_TOPO
C reference frame
C
AZCCW = .FALSE.
ELPLSZ = .TRUE.
CALL RECAZL ( STATE, AZCCW, ELPLSZ, R, AZ, EL )
C
C Convert velocity to azimuth/elevation coordinates.
C
CALL DAZLDR ( STATE(1), STATE(2), STATE(3),
. AZCCW, ELPLSZ, JACOBI )
CALL MXV ( JACOBI, STATE(4), AZLVEL )
C
C As a check, convert the azimuth/elevation state back to
C rectangular coordinates.
C
CALL AZLREC ( R, AZ, EL, AZCCW, ELPLSZ, RECTAN )
CALL DRDAZL ( R, AZ, EL, AZCCW, ELPLSZ, JACOBI )
CALL MXV ( JACOBI, AZLVEL, DRECTN )
WRITE(*,*)
WRITE(*,'(A)') 'AZ/EL coordinates:'
WRITE(*,*)
WRITE(*,FMT1) ' Range (km) = ', R
WRITE(*,FMT1) ' Azimuth (deg) = ', AZ * DPR()
WRITE(*,FMT1) ' Elevation (deg) = ', EL * DPR()
WRITE(*,*)
WRITE(*,'(A)') 'AZ/EL velocity:'
WRITE(*,*)
WRITE(*,FMT1) ' d Range/dt (km/s) = ', AZLVEL(1)
WRITE(*,FMT1) ' d Azimuth/dt (deg/s) = ', AZLVEL(2)
. * DPR()
WRITE(*,FMT1) ' d Elevation/dt (deg/s) = ', AZLVEL(3)
. * DPR()
WRITE(*,*)
WRITE(*,'(A)') 'Rectangular coordinates:'
WRITE(*,*)
WRITE(*,FMT1) ' X (km) = ', STATE(1)
WRITE(*,FMT1) ' Y (km) = ', STATE(2)
WRITE(*,FMT1) ' Z (km) = ', STATE(3)
WRITE(*,*)
WRITE(*,'(A)') 'Rectangular velocity:'
WRITE(*,*)
WRITE(*,FMT1) ' dX/dt (km/s) = ', STATE(4)
WRITE(*,FMT1) ' dY/dt (km/s) = ', STATE(5)
WRITE(*,FMT1) ' dZ/dt (km/s) = ', STATE(6)
WRITE(*,*)
WRITE(*,'(A)') 'Rectangular coordinates from inverse '
. // 'mapping:'
WRITE(*,*)
WRITE(*,FMT1) ' X (km) = ', RECTAN(1)
WRITE(*,FMT1) ' Y (km) = ', RECTAN(2)
WRITE(*,FMT1) ' Z (km) = ', RECTAN(3)
WRITE(*,*)
WRITE(*,'(A)') 'Rectangular velocity from inverse '
. // 'mapping:'
WRITE(*,*)
WRITE(*,FMT1) ' dX/dt (km/s) = ', DRECTN(1)
WRITE(*,FMT1) ' dY/dt (km/s) = ', DRECTN(2)
WRITE(*,FMT1) ' dZ/dt (km/s) = ', DRECTN(3)
WRITE(*,*)
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
AZ/EL coordinates:
Range (km) = 245721478.99272084
Azimuth (deg) = 294.48543372
Elevation (deg) = -48.94609726
AZ/EL velocity:
d Range/dt (km/s) = -4.68189834
d Azimuth/dt (deg/s) = 0.00402256
d Elevation/dt (deg/s) = -0.00309156
Rectangular coordinates:
X (km) = 66886767.37916667
Y (km) = 146868551.77222887
Z (km) = -185296611.10841590
Rectangular velocity:
dX/dt (km/s) = 6166.04150307
dY/dt (km/s) = -13797.77164550
dZ/dt (km/s) = -8704.32385654
Rectangular coordinates from inverse mapping:
X (km) = 66886767.37916658
Y (km) = 146868551.77222890
Z (km) = -185296611.10841590
Rectangular velocity from inverse mapping:
dX/dt (km/s) = 6166.04150307
dY/dt (km/s) = -13797.77164550
dZ/dt (km/s) = -8704.32385654
Restrictions
None.
Literature_References
None.
Author_and_Institution
N.J. Bachman (JPL)
J. Diaz del Rio (ODC Space)
Version
SPICELIB Version 1.0.0, 31-JAN-2021 (JDR) (NJB)
|
Fri Dec 31 18:36:12 2021