dazldr |
Table of contents
ProcedureDAZLDR ( Derivative of AZ/EL w.r.t. rectangular ) SUBROUTINE DAZLDR ( X, Y, Z, AZCCW, ELPLSZ, JACOBI ) AbstractCompute the Jacobian matrix of the transformation from rectangular to azimuth/elevation coordinates. Required_ReadingNone. KeywordsCOORDINATES DERIVATIVES MATRIX DeclarationsIMPLICIT NONE DOUBLE PRECISION X DOUBLE PRECISION Y DOUBLE PRECISION Z LOGICAL AZCCW LOGICAL ELPLSZ DOUBLE PRECISION JACOBI ( 3, 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- X I X-coordinate of point. Y I Y-coordinate of point. Z I Z-coordinate of point. AZCCW I Flag indicating how azimuth is measured. ELPLSZ I Flag indicating how elevation is measured. JACOBI O Matrix of partial derivatives. Detailed_InputX, Y, Z are the rectangular coordinates of the point at which the Jacobian matrix of the map from rectangular to azimuth/elevation coordinates is desired. AZCCW is a flag indicating how the azimuth is measured. If AZCCW is .TRUE., the azimuth increases in the counterclockwise direction; otherwise it increases in the clockwise direction. ELPLSZ is a flag indicating how the elevation is measured. If ELPLSZ is .TRUE., the elevation increases from the XY plane toward +Z; otherwise toward -Z. Detailed_OutputJACOBI is the matrix of partial derivatives of the transformation from rectangular to azimuth/elevation coordinates. It has the form .- -. | dr/dx dr/dy dr/dz | | daz/dx daz/dy daz/dz | | del/dx del/dy del/dz | `- -' evaluated at the input values of X, Y, and Z. ParametersNone. Exceptions1) If the input point is on the Z-axis ( X = 0 and Y = 0 ), the Jacobian matrix is undefined and therefore, the error SPICE(POINTONZAXIS) is signaled. FilesNone. ParticularsWhen performing vector calculations with velocities it is usually most convenient to work in rectangular coordinates. However, once the vector manipulations have been performed it is often desirable to convert the rectangular representations into azimuth/elevation coordinates to gain insights about phenomena in this coordinate system. To transform rectangular velocities to derivatives of coordinates in a azimuth/elevation coordinate system, one uses the Jacobian matrix of the transformation between the two systems. Given a state in rectangular coordinates ( x, y, z, dx, dy, dz ) the corresponding azimuth/elevation coordinate derivatives are given by the matrix equation: t | t (dr, daz, del) = JACOBI| * (dx, dy, dz) |(x,y,z) This routine computes the matrix | JACOBI| |(x, y, z) In the azimuth/elevation coordinate system, several conventions exist on how azimuth and elevation are measured. Using the AZCCW and ELPLSZ flags, users indicate which conventions shall be used. See the descriptions of these input arguments for details. ExamplesThe numerical results shown for this example may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Find the azimuth/elevation state of Venus as seen from the DSS-14 station at a given epoch. Map this state back to rectangular coordinates as a check. Task description ================ In this example, we will obtain the apparent state of Venus as seen from the DSS-14 station in the DSS-14 topocentric reference frame. We will use a station frames kernel and transform the resulting rectangular coordinates to azimuth, elevation and range and its derivatives using RECAZL and DAZLDR. We will map this state back to rectangular coordinates using AZLREC and DRDAZL. In order to introduce the usage of the logical flags AZCCW and ELPLSZ, we will request the azimuth to be measured clockwise and the elevation positive towards +Z axis of the DSS-14_TOPO reference frame. Kernels ======= Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: dazldr_ex1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de430.bsp Planetary ephemeris naif0011.tls Leapseconds earth_720101_070426.bpc Earth historical binary PCK earthstns_itrf93_050714.bsp DSN station SPK earth_topo_050714.tf DSN station FK \begindata KERNELS_TO_LOAD = ( 'de430.bsp', 'naif0011.tls', 'earth_720101_070426.bpc', 'earthstns_itrf93_050714.bsp', 'earth_topo_050714.tf' ) \begintext End of meta-kernel. Example code begins here. PROGRAM DAZLDR_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F20.8)' ) CHARACTER*(*) META PARAMETER ( META = 'dazldr_ex1.tm' ) INTEGER BDNMLN PARAMETER ( BDNMLN = 36 ) INTEGER CORLEN PARAMETER ( CORLEN = 10 ) INTEGER FRNMLN PARAMETER ( FRNMLN = 32 ) INTEGER TIMLEN PARAMETER ( TIMLEN = 40 ) C C Local variables C CHARACTER*(CORLEN) ABCORR CHARACTER*(BDNMLN) OBS CHARACTER*(TIMLEN) OBSTIM CHARACTER*(FRNMLN) REF CHARACTER*(BDNMLN) TARGET DOUBLE PRECISION AZ DOUBLE PRECISION AZLVEL ( 3 ) DOUBLE PRECISION DRECTN ( 3 ) DOUBLE PRECISION EL DOUBLE PRECISION ET DOUBLE PRECISION JACOBI ( 3, 3 ) DOUBLE PRECISION LT DOUBLE PRECISION STATE ( 6 ) DOUBLE PRECISION R DOUBLE PRECISION RECTAN ( 3 ) LOGICAL AZCCW LOGICAL ELPLSZ C C Load SPICE kernels. C CALL FURNSH ( META ) C C Convert the observation time to seconds past J2000 TDB. C OBSTIM = '2003 OCT 13 06:00:00.000000 UTC' CALL STR2ET ( OBSTIM, ET ) C C Set the target, observer, observer frame, and C aberration corrections. C TARGET = 'VENUS' OBS = 'DSS-14' REF = 'DSS-14_TOPO' ABCORR = 'CN+S' C C Compute the observer-target state. C CALL SPKEZR ( TARGET, ET, REF, ABCORR, OBS, . STATE, LT ) C C Convert position to azimuth/elevation coordinates, C with azimuth increasing clockwise and elevation C positive towards +Z axis of the DSS-14_TOPO C reference frame C AZCCW = .FALSE. ELPLSZ = .TRUE. CALL RECAZL ( STATE, AZCCW, ELPLSZ, R, AZ, EL ) C C Convert velocity to azimuth/elevation coordinates. C CALL DAZLDR ( STATE(1), STATE(2), STATE(3), . AZCCW, ELPLSZ, JACOBI ) CALL MXV ( JACOBI, STATE(4), AZLVEL ) C C As a check, convert the azimuth/elevation state back to C rectangular coordinates. C CALL AZLREC ( R, AZ, EL, AZCCW, ELPLSZ, RECTAN ) CALL DRDAZL ( R, AZ, EL, AZCCW, ELPLSZ, JACOBI ) CALL MXV ( JACOBI, AZLVEL, DRECTN ) WRITE(*,*) WRITE(*,'(A)') 'AZ/EL coordinates:' WRITE(*,*) WRITE(*,FMT1) ' Range (km) = ', R WRITE(*,FMT1) ' Azimuth (deg) = ', AZ * DPR() WRITE(*,FMT1) ' Elevation (deg) = ', EL * DPR() WRITE(*,*) WRITE(*,'(A)') 'AZ/EL velocity:' WRITE(*,*) WRITE(*,FMT1) ' d Range/dt (km/s) = ', AZLVEL(1) WRITE(*,FMT1) ' d Azimuth/dt (deg/s) = ', AZLVEL(2) . * DPR() WRITE(*,FMT1) ' d Elevation/dt (deg/s) = ', AZLVEL(3) . * DPR() WRITE(*,*) WRITE(*,'(A)') 'Rectangular coordinates:' WRITE(*,*) WRITE(*,FMT1) ' X (km) = ', STATE(1) WRITE(*,FMT1) ' Y (km) = ', STATE(2) WRITE(*,FMT1) ' Z (km) = ', STATE(3) WRITE(*,*) WRITE(*,'(A)') 'Rectangular velocity:' WRITE(*,*) WRITE(*,FMT1) ' dX/dt (km/s) = ', STATE(4) WRITE(*,FMT1) ' dY/dt (km/s) = ', STATE(5) WRITE(*,FMT1) ' dZ/dt (km/s) = ', STATE(6) WRITE(*,*) WRITE(*,'(A)') 'Rectangular coordinates from inverse ' . // 'mapping:' WRITE(*,*) WRITE(*,FMT1) ' X (km) = ', RECTAN(1) WRITE(*,FMT1) ' Y (km) = ', RECTAN(2) WRITE(*,FMT1) ' Z (km) = ', RECTAN(3) WRITE(*,*) WRITE(*,'(A)') 'Rectangular velocity from inverse ' . // 'mapping:' WRITE(*,*) WRITE(*,FMT1) ' dX/dt (km/s) = ', DRECTN(1) WRITE(*,FMT1) ' dY/dt (km/s) = ', DRECTN(2) WRITE(*,FMT1) ' dZ/dt (km/s) = ', DRECTN(3) WRITE(*,*) END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: AZ/EL coordinates: Range (km) = 245721478.99272084 Azimuth (deg) = 294.48543372 Elevation (deg) = -48.94609726 AZ/EL velocity: d Range/dt (km/s) = -4.68189834 d Azimuth/dt (deg/s) = 0.00402256 d Elevation/dt (deg/s) = -0.00309156 Rectangular coordinates: X (km) = 66886767.37916667 Y (km) = 146868551.77222887 Z (km) = -185296611.10841590 Rectangular velocity: dX/dt (km/s) = 6166.04150307 dY/dt (km/s) = -13797.77164550 dZ/dt (km/s) = -8704.32385654 Rectangular coordinates from inverse mapping: X (km) = 66886767.37916658 Y (km) = 146868551.77222890 Z (km) = -185296611.10841590 Rectangular velocity from inverse mapping: dX/dt (km/s) = 6166.04150307 dY/dt (km/s) = -13797.77164550 dZ/dt (km/s) = -8704.32385654 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) VersionSPICELIB Version 1.0.0, 31-JAN-2021 (JDR) (NJB) |
Fri Dec 31 18:36:12 2021