Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
dazldr

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     DAZLDR ( Derivative of AZ/EL w.r.t. rectangular )

     SUBROUTINE DAZLDR ( X, Y, Z, AZCCW, ELPLSZ, JACOBI )

Abstract

     Compute the Jacobian matrix of the transformation from
     rectangular to azimuth/elevation coordinates.

Required_Reading

     None.

Keywords

     COORDINATES
     DERIVATIVES
     MATRIX

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION      X
     DOUBLE PRECISION      Y
     DOUBLE PRECISION      Z
     LOGICAL               AZCCW
     LOGICAL               ELPLSZ
     DOUBLE PRECISION      JACOBI ( 3, 3 )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     X          I   X-coordinate of point.
     Y          I   Y-coordinate of point.
     Z          I   Z-coordinate of point.
     AZCCW      I   Flag indicating how azimuth is measured.
     ELPLSZ     I   Flag indicating how elevation is measured.
     JACOBI     O   Matrix of partial derivatives.

Detailed_Input

     X,
     Y,
     Z        are the rectangular coordinates of the point at
              which the Jacobian matrix of the map from rectangular
              to azimuth/elevation coordinates is desired.

     AZCCW    is a flag indicating how the azimuth is measured.

              If AZCCW is .TRUE., the azimuth increases in the
              counterclockwise direction; otherwise it increases
              in the clockwise direction.

     ELPLSZ   is a flag indicating how the elevation is measured.

              If ELPLSZ is .TRUE., the elevation increases from the
              XY plane toward +Z; otherwise toward -Z.

Detailed_Output

     JACOBI   is the matrix of partial derivatives of the
              transformation from rectangular to azimuth/elevation
              coordinates. It has the form

                 .-                            -.
                 |  dr/dx     dr/dy     dr/dz   |
                 |  daz/dx    daz/dy    daz/dz  |
                 |  del/dx    del/dy    del/dz  |
                 `-                            -'

               evaluated at the input values of X, Y, and Z.

Parameters

     None.

Exceptions

     1)  If the input point is on the Z-axis ( X = 0 and Y = 0 ), the
         Jacobian matrix is undefined and therefore, the error
         SPICE(POINTONZAXIS) is signaled.

Files

     None.

Particulars

     When performing vector calculations with velocities it is
     usually most convenient to work in rectangular coordinates.
     However, once the vector manipulations have been performed
     it is often desirable to convert the rectangular representations
     into azimuth/elevation coordinates to gain insights about
     phenomena in this coordinate system.

     To transform rectangular velocities to derivatives of coordinates
     in a azimuth/elevation coordinate system, one uses the Jacobian
     matrix of the transformation between the two systems.

     Given a state in rectangular coordinates

        ( x, y, z, dx, dy, dz )

     the corresponding azimuth/elevation coordinate derivatives are
     given by the matrix equation:

                      t          |                      t
        (dr, daz, del)   = JACOBI|        * (dx, dy, dz)
                                 |(x,y,z)

     This routine computes the matrix

              |
        JACOBI|
              |(x, y, z)

     In the azimuth/elevation coordinate system, several conventions
     exist on how azimuth and elevation are measured. Using the AZCCW
     and ELPLSZ flags, users indicate which conventions shall be used.
     See the descriptions of these input arguments for details.

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Find the azimuth/elevation state of Venus as seen from the
        DSS-14 station at a given epoch. Map this state back to
        rectangular coordinates as a check.

        Task description
        ================

        In this example, we will obtain the apparent state of Venus as
        seen from the DSS-14 station in the DSS-14 topocentric
        reference frame. We will use a station frames kernel and
        transform the resulting rectangular coordinates to azimuth,
        elevation and range and its derivatives using RECAZL and
        DAZLDR.

        We will map this state back to rectangular coordinates using
        AZLREC and DRDAZL.

        In order to introduce the usage of the logical flags AZCCW
        and ELPLSZ, we will request the azimuth to be measured
        clockwise and the elevation positive towards +Z
        axis of the DSS-14_TOPO reference frame.

        Kernels
        =======

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: dazldr_ex1.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                        Contents
              ---------                        --------
              de430.bsp                        Planetary ephemeris
              naif0011.tls                     Leapseconds
              earth_720101_070426.bpc          Earth historical
                                                  binary PCK
              earthstns_itrf93_050714.bsp      DSN station SPK
              earth_topo_050714.tf             DSN station FK

           \begindata

           KERNELS_TO_LOAD = ( 'de430.bsp',
                               'naif0011.tls',
                               'earth_720101_070426.bpc',
                               'earthstns_itrf93_050714.bsp',
                               'earth_topo_050714.tf'         )

           \begintext

           End of meta-kernel.


        Example code begins here.


              PROGRAM DAZLDR_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1   = '(A,F20.8)' )

              CHARACTER*(*)         META
              PARAMETER           ( META   = 'dazldr_ex1.tm' )

              INTEGER               BDNMLN
              PARAMETER           ( BDNMLN = 36 )

              INTEGER               CORLEN
              PARAMETER           ( CORLEN = 10 )

              INTEGER               FRNMLN
              PARAMETER           ( FRNMLN = 32 )

              INTEGER               TIMLEN
              PARAMETER           ( TIMLEN = 40 )

        C
        C     Local variables
        C
              CHARACTER*(CORLEN)    ABCORR
              CHARACTER*(BDNMLN)    OBS
              CHARACTER*(TIMLEN)    OBSTIM
              CHARACTER*(FRNMLN)    REF
              CHARACTER*(BDNMLN)    TARGET

              DOUBLE PRECISION      AZ
              DOUBLE PRECISION      AZLVEL ( 3    )
              DOUBLE PRECISION      DRECTN ( 3    )
              DOUBLE PRECISION      EL
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      JACOBI ( 3, 3 )
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      STATE  ( 6    )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      RECTAN ( 3    )

              LOGICAL               AZCCW
              LOGICAL               ELPLSZ

        C
        C     Load SPICE kernels.
        C
              CALL FURNSH ( META )

        C
        C     Convert the observation time to seconds past J2000 TDB.
        C
              OBSTIM = '2003 OCT 13 06:00:00.000000 UTC'

              CALL STR2ET ( OBSTIM, ET )

        C
        C     Set the target, observer, observer frame, and
        C     aberration corrections.
        C
              TARGET = 'VENUS'
              OBS    = 'DSS-14'
              REF    = 'DSS-14_TOPO'
              ABCORR = 'CN+S'

        C
        C     Compute the observer-target state.
        C
              CALL SPKEZR ( TARGET, ET, REF, ABCORR, OBS,
             .              STATE,  LT                   )

        C
        C     Convert position to azimuth/elevation coordinates,
        C     with azimuth increasing clockwise and elevation
        C     positive towards +Z axis of the DSS-14_TOPO
        C     reference frame
        C
              AZCCW  = .FALSE.
              ELPLSZ = .TRUE.

              CALL RECAZL ( STATE, AZCCW, ELPLSZ, R, AZ, EL )

        C
        C     Convert velocity to azimuth/elevation coordinates.
        C
              CALL DAZLDR ( STATE(1), STATE(2), STATE(3),
             .              AZCCW,    ELPLSZ,   JACOBI   )

              CALL MXV ( JACOBI, STATE(4), AZLVEL )

        C
        C     As a check, convert the azimuth/elevation state back to
        C     rectangular coordinates.
        C
              CALL AZLREC ( R, AZ, EL, AZCCW, ELPLSZ, RECTAN )

              CALL DRDAZL ( R, AZ, EL, AZCCW, ELPLSZ, JACOBI )

              CALL MXV ( JACOBI, AZLVEL, DRECTN )

              WRITE(*,*)
              WRITE(*,'(A)') 'AZ/EL coordinates:'
              WRITE(*,*)
              WRITE(*,FMT1) '   Range      (km)        = ', R
              WRITE(*,FMT1) '   Azimuth    (deg)       = ', AZ * DPR()
              WRITE(*,FMT1) '   Elevation  (deg)       = ', EL * DPR()
              WRITE(*,*)
              WRITE(*,'(A)')    'AZ/EL velocity:'
              WRITE(*,*)
              WRITE(*,FMT1) '   d Range/dt     (km/s)  = ', AZLVEL(1)
              WRITE(*,FMT1) '   d Azimuth/dt   (deg/s) = ', AZLVEL(2)
             .                                             * DPR()
              WRITE(*,FMT1) '   d Elevation/dt (deg/s) = ', AZLVEL(3)
             .                                             * DPR()
              WRITE(*,*)
              WRITE(*,'(A)') 'Rectangular coordinates:'
              WRITE(*,*)
              WRITE(*,FMT1) '   X (km)                 = ', STATE(1)
              WRITE(*,FMT1) '   Y (km)                 = ', STATE(2)
              WRITE(*,FMT1) '   Z (km)                 = ', STATE(3)
              WRITE(*,*)
              WRITE(*,'(A)') 'Rectangular velocity:'
              WRITE(*,*)
              WRITE(*,FMT1) '   dX/dt (km/s)           = ', STATE(4)
              WRITE(*,FMT1) '   dY/dt (km/s)           = ', STATE(5)
              WRITE(*,FMT1) '   dZ/dt (km/s)           = ', STATE(6)
              WRITE(*,*)
              WRITE(*,'(A)') 'Rectangular coordinates from inverse '
             .    //         'mapping:'
              WRITE(*,*)
              WRITE(*,FMT1) '   X (km)                 = ', RECTAN(1)
              WRITE(*,FMT1) '   Y (km)                 = ', RECTAN(2)
              WRITE(*,FMT1) '   Z (km)                 = ', RECTAN(3)
              WRITE(*,*)
              WRITE(*,'(A)') 'Rectangular velocity from inverse '
             .    //         'mapping:'
              WRITE(*,*)
              WRITE(*,FMT1) '   dX/dt (km/s)           = ', DRECTN(1)
              WRITE(*,FMT1) '   dY/dt (km/s)           = ', DRECTN(2)
              WRITE(*,FMT1) '   dZ/dt (km/s)           = ', DRECTN(3)
              WRITE(*,*)

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


        AZ/EL coordinates:

           Range      (km)        =   245721478.99272084
           Azimuth    (deg)       =         294.48543372
           Elevation  (deg)       =         -48.94609726

        AZ/EL velocity:

           d Range/dt     (km/s)  =          -4.68189834
           d Azimuth/dt   (deg/s) =           0.00402256
           d Elevation/dt (deg/s) =          -0.00309156

        Rectangular coordinates:

           X (km)                 =    66886767.37916667
           Y (km)                 =   146868551.77222887
           Z (km)                 =  -185296611.10841590

        Rectangular velocity:

           dX/dt (km/s)           =        6166.04150307
           dY/dt (km/s)           =      -13797.77164550
           dZ/dt (km/s)           =       -8704.32385654

        Rectangular coordinates from inverse mapping:

           X (km)                 =    66886767.37916658
           Y (km)                 =   146868551.77222890
           Z (km)                 =  -185296611.10841590

        Rectangular velocity from inverse mapping:

           dX/dt (km/s)           =        6166.04150307
           dY/dt (km/s)           =      -13797.77164550
           dZ/dt (km/s)           =       -8704.32385654

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     N.J. Bachman       (JPL)
     J. Diaz del Rio    (ODC Space)

Version

    SPICELIB Version 1.0.0, 31-JAN-2021 (JDR) (NJB)
Fri Dec 31 18:36:12 2021