recazl |
Table of contents
ProcedureRECAZL ( Rectangular coordinates to AZ/EL ) SUBROUTINE RECAZL ( RECTAN, AZCCW, ELPLSZ, RANGE, AZ, EL ) AbstractConvert rectangular coordinates of a point to range, azimuth and elevation. Required_ReadingNone. KeywordsCONVERSION COORDINATES DeclarationsIMPLICIT NONE DOUBLE PRECISION RECTAN ( 3 ) LOGICAL AZCCW LOGICAL ELPLSZ DOUBLE PRECISION RANGE DOUBLE PRECISION AZ DOUBLE PRECISION EL Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- RECTAN I Rectangular coordinates of a point. AZCCW I Flag indicating how Azimuth is measured. ELPLSZ I Flag indicating how Elevation is measured. RANGE O Distance of the point from the origin. AZ O Azimuth in radians. EL O Elevation in radians. Detailed_InputRECTAN are the rectangular coordinates of a point. AZCCW is a flag indicating how azimuth is measured. If AZCCW is .TRUE., azimuth increases in the counterclockwise direction; otherwise it increases in the clockwise direction. ELPLSZ is a flag indicating how elevation is measured. If ELPLSZ is .TRUE., elevation increases from the XY plane toward +Z; otherwise toward -Z. Detailed_OutputRANGE is the distance of the point from the origin. The units associated with RANGE are those associated with the input point. AZ is the azimuth of the point. This is the angle between the projection onto the XY plane of the vector from the origin to the point and the +X axis of the reference frame. AZ is zero at the +X axis. The way azimuth is measured depends on the value of the logical flag AZCCW. See the description of the argument AZCCW for details. AZ is output in radians. The range of AZ is [0, 2*pi]. EL is the elevation of the point. This is the angle between the vector from the origin to the point and the XY plane. EL is zero at the XY plane. The way elevation is measured depends on the value of the logical flag ELPLSZ. See the description of the argument ELPLSZ for details. EL is output in radians. The range of EL is [-pi/2, pi/2]. ParametersNone. ExceptionsError free. 1) If the X and Y components of RECTAN are both zero, the azimuth is set to zero. 2) If RECTAN is the zero vector, azimuth and elevation are both set to zero. FilesNone. ParticularsThis routine returns the range, azimuth, and elevation of a point specified in rectangular coordinates. The output is defined by the distance from the center of the reference frame (range), the angle from a reference vector (azimuth), and the angle above the XY plane of the reference frame (elevation). The way azimuth and elevation are measured depends on the values given by the user to the AZCCW and ELPLSZ logical flags. See the descriptions of these input arguments for details. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Create four tables showing a variety of rectangular coordinates and the corresponding range, azimuth and elevation, resulting from the different choices of the AZCCW and ELPLSZ flags. Corresponding rectangular coordinates and azimuth, elevation and range are listed to three decimal places. Output angles are in degrees. Example code begins here. PROGRAM RECAZL_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters. C INTEGER NREC PARAMETER ( NREC = 11 ) C C Local variables. C CHARACTER*(30) MSG DOUBLE PRECISION AZ DOUBLE PRECISION EL DOUBLE PRECISION RANGE DOUBLE PRECISION RECTAN ( 3, NREC ) INTEGER I INTEGER J INTEGER K INTEGER N LOGICAL AZCCW ( 2 ) LOGICAL ELPLSZ ( 2 ) C C Define the input rectangular coordinates and the C different choices of the AZCCW and ELPLSZ flags. C DATA RECTAN / . 0.D0, 0.D0, 0.D0, . 1.D0, 0.D0, 0.D0, . 0.D0, 1.D0, 0.D0, . 0.D0, 0.D0, 1.D0, . -1.D0, 0.D0, 0.D0, . 0.D0, -1.D0, 0.D0, . 0.D0, 0.D0, -1.D0, . 1.D0, 1.D0, 0.D0, . 1.D0, 0.D0, 1.D0, . 0.D0, 1.D0, 1.D0, . 1.D0, 1.D0, 1.D0 / DATA AZCCW / .FALSE., .TRUE. / DATA ELPLSZ / .FALSE., .TRUE. / C C Create a table for each combination of AZCCW and ELPLSZ. C DO I = 1, 2 DO J = 1, 2 C C Display the flag settings. C MSG = 'AZCCW = #; ELPLSZ = #' CALL REPML ( MSG, '#', AZCCW(I), 'C', MSG ) CALL REPML ( MSG, '#', ELPLSZ(J), 'C', MSG ) WRITE(*,*) WRITE(*,'(A)') MSG C C Print the banner. C WRITE(*,*) WRITE(*,'(A)') ' RECT(1) RECT(2) RECT(3) ' . // ' RANGE AZ EL' WRITE(*,'(A)') ' ------- ------- ------- ' . // ' ------- ------- -------' C C Do the conversion. Output angles in degrees. C DO N = 1, NREC CALL RECAZL( RECTAN(1,N), AZCCW(I), ELPLSZ(J), . RANGE, AZ, EL ) WRITE (*,'(6F9.3)') ( RECTAN(K,N), K=1,3 ), . RANGE, AZ * DPR(), EL * DPR() END DO END DO END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: AZCCW = False; ELPLSZ = False RECT(1) RECT(2) RECT(3) RANGE AZ EL ------- ------- ------- ------- ------- ------- 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 270.000 0.000 0.000 0.000 1.000 1.000 0.000 -90.000 -1.000 0.000 0.000 1.000 180.000 0.000 0.000 -1.000 0.000 1.000 90.000 0.000 0.000 0.000 -1.000 1.000 0.000 90.000 1.000 1.000 0.000 1.414 315.000 0.000 1.000 0.000 1.000 1.414 0.000 -45.000 0.000 1.000 1.000 1.414 270.000 -45.000 1.000 1.000 1.000 1.732 315.000 -35.264 AZCCW = False; ELPLSZ = True RECT(1) RECT(2) RECT(3) RANGE AZ EL ------- ------- ------- ------- ------- ------- 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 270.000 0.000 0.000 0.000 1.000 1.000 0.000 90.000 -1.000 0.000 0.000 1.000 180.000 0.000 0.000 -1.000 0.000 1.000 90.000 0.000 0.000 0.000 -1.000 1.000 0.000 -90.000 1.000 1.000 0.000 1.414 315.000 0.000 1.000 0.000 1.000 1.414 0.000 45.000 0.000 1.000 1.000 1.414 270.000 45.000 1.000 1.000 1.000 1.732 315.000 35.264 AZCCW = True; ELPLSZ = False RECT(1) RECT(2) RECT(3) RANGE AZ EL ------- ------- ------- ------- ------- ------- 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 90.000 0.000 0.000 0.000 1.000 1.000 0.000 -90.000 -1.000 0.000 0.000 1.000 180.000 0.000 0.000 -1.000 0.000 1.000 270.000 0.000 0.000 0.000 -1.000 1.000 0.000 90.000 1.000 1.000 0.000 1.414 45.000 0.000 1.000 0.000 1.000 1.414 0.000 -45.000 0.000 1.000 1.000 1.414 90.000 -45.000 1.000 1.000 1.000 1.732 45.000 -35.264 AZCCW = True; ELPLSZ = True RECT(1) RECT(2) RECT(3) RANGE AZ EL ------- ------- ------- ------- ------- ------- 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 90.000 0.000 0.000 0.000 1.000 1.000 0.000 90.000 -1.000 0.000 0.000 1.000 180.000 0.000 0.000 -1.000 0.000 1.000 270.000 0.000 0.000 0.000 -1.000 1.000 0.000 -90.000 1.000 1.000 0.000 1.414 45.000 0.000 1.000 0.000 1.000 1.414 0.000 45.000 0.000 1.000 1.000 1.414 90.000 45.000 1.000 1.000 1.000 1.732 45.000 35.264 2) Compute the apparent azimuth and elevation of Venus as seen from the DSS-14 station. Task Description ================ In this example, we will obtain the apparent position of Venus as seen from the DSS-14 station in the DSS-14 topocentric reference frame. We will use a station frames kernel and transform the resulting rectangular coordinates to azimuth, elevation and range using AZLREC. In order to introduce the usage of the logical flags AZCCW and ELPLSZ, we will request the azimuth to be measured clockwise and the elevation positive towards the +Z axis of the DSS-14_TOPO reference frame. Kernels ======= Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: recazl_ex2.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de430.bsp Planetary ephemeris naif0011.tls Leapseconds earth_720101_070426.bpc Earth historical binary PCK earthstns_itrf93_050714.bsp DSN station SPK earth_topo_050714.tf DSN station FK \begindata KERNELS_TO_LOAD = ( 'de430.bsp', 'naif0011.tls', 'earth_720101_070426.bpc', 'earthstns_itrf93_050714.bsp', 'earth_topo_050714.tf' ) \begintext End of meta-kernel. Example code begins here. PROGRAM RECAZL_EX2 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters C CHARACTER*(*) FMT0 PARAMETER ( FMT0 = '(3F21.8)' ) CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F20.8)' ) CHARACTER*(*) META PARAMETER ( META = 'recazl_ex2.tm' ) INTEGER BDNMLN PARAMETER ( BDNMLN = 36 ) INTEGER CORLEN PARAMETER ( CORLEN = 10 ) INTEGER FRNMLN PARAMETER ( FRNMLN = 32 ) INTEGER TIMLEN PARAMETER ( TIMLEN = 40 ) C C Local variables C CHARACTER*(CORLEN) ABCORR CHARACTER*(BDNMLN) OBS CHARACTER*(TIMLEN) OBSTIM CHARACTER*(FRNMLN) REF CHARACTER*(BDNMLN) TARGET DOUBLE PRECISION AZ DOUBLE PRECISION EL DOUBLE PRECISION ET DOUBLE PRECISION LT DOUBLE PRECISION PTARG ( 3 ) DOUBLE PRECISION R INTEGER I LOGICAL AZCCW LOGICAL ELPLSZ C C Load SPICE kernels. C CALL FURNSH ( META ) C C Convert the observation time to seconds past J2000 TDB. C OBSTIM = '2003 OCT 13 06:00:00.000000 UTC' CALL STR2ET ( OBSTIM, ET ) C C Set the target, observer, observer frame, and C aberration corrections. C TARGET = 'VENUS' OBS = 'DSS-14' REF = 'DSS-14_TOPO' ABCORR = 'CN+S' C C Compute the observer-target position. C CALL SPKPOS ( TARGET, ET, REF, ABCORR, OBS, PTARG, LT ) C C Compute azimuth, elevation and range of Venus C as seen from DSS-14, with azimuth increasing C clockwise and elevation positive towards +Z C axis of the DSS-14_TOPO reference frame C AZCCW = .FALSE. ELPLSZ = .TRUE. CALL RECAZL ( PTARG, AZCCW, ELPLSZ, R, AZ, EL ) C C Express both angles in degrees. C EL = EL * DPR() AZ = AZ * DPR() C C Display the computed position, the range and C the angles. C WRITE (*,*) WRITE (*,'(2A)') 'Target: ', TARGET WRITE (*,'(2A)') 'Observation time: ', OBSTIM WRITE (*,'(2A)') 'Observer center: ', OBS WRITE (*,'(2A)') 'Observer frame: ', REF WRITE (*,'(2A)') 'Aberration correction: ', ABCORR WRITE (*,*) WRITE (*,'(A)') 'Observer-target position (km):' WRITE (*,FMT0) PTARG WRITE (*,FMT1) 'Light time (s): ', LT WRITE (*,*) WRITE (*,FMT1) 'Target azimuth (deg): ', AZ WRITE (*,FMT1) 'Target elevation (deg): ', EL WRITE (*,FMT1) 'Observer-target distance (km): ', R WRITE (*,*) END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Target: VENUS Observation time: 2003 OCT 13 06:00:00.000000 UTC Observer center: DSS-14 Observer frame: DSS-14_TOPO Aberration correction: CN+S Observer-target position (km): 66886767.37916669 146868551.77222887 -185296611.10841593 Light time (s): 819.63862811 Target azimuth (deg): 294.48543372 Target elevation (deg): -48.94609726 Observer-target distance (km): 245721478.99272084 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) S.C. Krening (JPL) B.V. Semenov (JPL) VersionSPICELIB Version 1.0.0, 07-SEP-2021 (JDR) (NJB) (SCK) (BVS) |
Fri Dec 31 18:36:41 2021