Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_latsph

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries

Abstract


   CSPICE_LATSPH converts latitudinal coordinates to spherical
   coordinates.

I/O


   Given:

      radius   the value(s) describing the distance of the position
               from the origin.

               [1,n] = size(radius); double = class(radius)

      lon      the value(s) describing the angle of the position from
               the XZ plane measured in radians.

               [1,n] = size(lon); double = class(lon)

      lat      the value(s) describing the angle of the position from the
               XY plane measured in radians.

               [1,n] = size(lat); double = class(lat)

   the call:

      [rho, colat, slon] = cspice_latsph( radius, lon, lat)

   returns:

      rho      the value(s) describing the distance of the position
               from the origin.

               [1,n] = size(rho); double = class(rho)

      colat    the value(s) describing the angle between the point and the
               positive z-axis, measured in radians (also referred to
               as the polar angle).

               [1,n] = size(colat); double = class(colat)

      slon     the value(s) describing the angle of the projection of the
               point to the XY plane from the positive X-axis, measured
               in radians, with range:

                   -pi < slon <= pi

               The positive Y-axis is at longitude PI/2 radians.

               [1,n] = size(slon); double = class(slon)


               The argument `rho' returns in the same units associated
               with `radius'.

               `rho', `colat', and `slon' return with the same vectorization
               measure, N, as `radius', `lon', and `lat'.

Parameters


   None.

Examples


   Any numerical results shown for these examples may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Co-latitude is obtained by subtracting latitude from cspice_halfpi
      Radius and longitude mean the same thing in both latitudinal
      and spherical coordinates. The table below lists `lat' and
      corresponding `colat' in terms of degrees.

           lat     colat
          -----    -----
             0        90
            20        70
            45        45
           -30       120
            90         0
           -45       135


   2) Compute the latitudinal coordinates of the position of the Moon
      as seen from the Earth, and convert them to spherical and
      rectangular coordinates.

      Use the meta-kernel shown below to load the required SPICE
      kernels.


         KPL/MK

         File name: latsph_ex2.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            naif0012.tls                  Leapseconds


         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'naif0012.tls'  )

         \begintext

         End of meta-kernel


      Example code begins here.


      function latsph_ex2()

         %
         % Load an SPK, leapseconds, and PCK kernel set.
         %
         cspice_furnsh( 'latsph_ex2.tm' )

         %
         % Convert the time to ET.
         %
         et = cspice_str2et( '2017 Mar 20' );

         %
         % Retrieve the position of the moon seen from earth at `et'
         % in the J2000 frame without aberration correction.
         %
         [pos, et] = cspice_spkpos( 'MOON', et, 'J2000', 'NONE', 'EARTH' );

         fprintf( 'Original rectangular coordinates:\n' )
         fprintf( '   X            (km): %20.8f\n', pos(1) )
         fprintf( '   Y            (km): %20.8f\n', pos(2) )
         fprintf( '   Z            (km): %20.8f\n', pos(3) )

         %
         % Convert the position vector `pos' to latitudinal
         % coordinates.
         %
         [radius, lon, lat] = cspice_reclat(pos);
         fprintf( '\n' )
         fprintf( 'Latitudinal coordinates:\n' )
         fprintf( '   Radius       (km): %20.8f\n', radius )
         fprintf( '   Longitude   (deg): %20.8f\n', lon * cspice_dpr )
         fprintf( '   Latitude    (deg): %20.8f\n', lat * cspice_dpr )

         %
         % Convert the latitudinal coords to spherical.
         %
         [rho, colat, slon] = cspice_latsph( radius, lon, lat);
         fprintf( '\n' )
         fprintf( 'Spherical coordinates:\n' )
         fprintf( '   Radius       (km): %20.8f\n', rho )
         fprintf( '   Polar Angle (deg): %20.8f\n', colat * cspice_dpr )
         fprintf( '   Longitude   (deg): %20.8f\n', slon  * cspice_dpr )

         %
         % Convert the spherical to rectangular.
         %
         [rectan] = cspice_sphrec(rho, colat, slon);
         fprintf( '\n' )
         fprintf( 'Rectangular coordinates from cspice_sphrec:\n' )
         fprintf( '   X            (km): %20.8f\n', rectan(1) )
         fprintf( '   Y            (km): %20.8f\n', rectan(2) )
         fprintf( '   Z            (km): %20.8f\n', rectan(3) )

         %
         % It's always good form to unload kernels after use,
         % particularly in MATLAB due to data persistence.
         %
         cspice_kclear


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


      Original rectangular coordinates:
         X            (km):      -55658.44323296
         Y            (km):     -379226.32931475
         Z            (km):     -126505.93063865

      Latitudinal coordinates:
         Radius       (km):      403626.33912495
         Longitude   (deg):         -98.34959789
         Latitude    (deg):         -18.26566077

      Spherical coordinates:
         Radius       (km):      403626.33912495
         Polar Angle (deg):         108.26566077
         Longitude   (deg):         -98.34959789

      Rectangular coordinates from cspice_sphrec:
         X            (km):      -55658.44323296
         Y            (km):     -379226.32931475
         Z            (km):     -126505.93063865


   3) Create a table showing a variety of latitudinal coordinates
      and the corresponding spherical coordinates.

      Corresponding latitudinal and spherical coordinates are
      listed to four decimal places. Input and output angles are
      in degrees.


      Example code begins here.


      function latsph_ex3()

         %
         % Define six sets of latitudinal coordinates, `lon' and `lat'
         % expressed in degrees - converted to radians by use
         % of cspice_rpd.
         %
         rad = [ 1.,  1., sqrt(2.), sqrt(2.),   1.,  0. ];
         lon = [ 0., 90.,     180.,     180., 180., 33. ] * cspice_rpd;
         lat = [ 0.,  0.,      45.,      -45., 90.,  0. ] * cspice_rpd;

         %
         % ...convert the latitudinal coordinates to spherical coordinates
         %
         [rho, colat, slon] = cspice_latsph(rad, lon, lat);

         %
         % ...convert angular measure to degrees.
         %
         colat = colat * cspice_dpr;
         lon   = lon   * cspice_dpr;
         slon  = slon  * cspice_dpr;
         lat   = lat   * cspice_dpr;

         %
         % Output banner.
         %
         disp('   radius     lon       lat        r       colat      slon ')
         disp('  -------  --------  --------   -------   -------   -------')

         %
         % Create an array of values for output.
         %
         output = [ rad; lon; lat; rho; colat; slon];
         txt    = sprintf( '%9.3f %9.3f %9.3f %9.3f %9.3f %9.3f\n', output );
         disp( txt )


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


         radius     lon       lat        r       colat      slon
        -------  --------  --------   -------   -------   -------
          1.000     0.000     0.000     1.000    90.000     0.000
          1.000    90.000     0.000     1.000    90.000    90.000
          1.414   180.000    45.000     1.414    45.000   180.000
          1.414   180.000   -45.000     1.414   135.000   180.000
          1.000   180.000    90.000     1.000     0.000   180.000
          0.000    33.000     0.000     0.000    90.000    33.000


Particulars


   This routine returns the spherical coordinates of a point
   whose position is input in latitudinal coordinates.

   Latitudinal coordinates are defined by a distance from a central
   reference point, an angle from a reference meridian, and an angle
   above the equator of a sphere centered at the central reference
   point.

   Spherical coordinates are defined by a distance from a central
   reference point, an angle from a reference meridian, and an angle
   from the z-axis.

Exceptions


   1)  If any of the input arguments, `radius', `lon' or `lat', is
       undefined, an error is signaled by the Matlab error handling
       system.

   2)  If any of the input arguments, `radius', `lon' or `lat', is
       not of the expected type, or it does not have the expected
       dimensions and size, an error is signaled by the Mice
       interface.

   3)  If the input vectorizable arguments `radius', `lon' and `lat'
       do not have the same measure of vectorization (N), an error is
       signaled by the Mice interface.

Files


   None.

Restrictions


   None.

Required_Reading


   MICE.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)

Version


   -Mice Version 1.1.0, 10-AUG-2021 (EDW) (JDR)

       Edited the header to comply with NAIF standard. Added
       meta-kernel to example #2. Updated code example #2 to produce
       formatted output and added a call to cspice_kclear. Added the
       problem statement to existing examples and added third example.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections, and
       completed -Particulars section.

       Changed the input arguments "longitude", "latitude" to "lon" and
       "lat", and the output arguments "radius" and "lon" to "rho" and
       "slon" for consistency with other functions.

       Eliminated use of "lasterror" in rethrow.

       Removed reference to the function's corresponding CSPICE header from
       -Required_Reading section.

   -Mice Version 1.0.1, 01-DEC-2014 (EDW)

       Edited -I/O section to conform to NAIF standard for Mice
       documentation.

   -Mice Version 1.0.0, 22-NOV-2005 (EDW)

Index_Entries


   latitudinal to spherical coordinates


Fri Dec 31 18:44:25 2021