Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_sphrec

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries

Abstract


   CSPICE_SPHREC converts spherical coordinates to rectangular
   (Cartesian) coordinates.

I/O


   Given:

      r        the value(s) describing the distance of the position
               from the origin.

               [1,n] = size(r); double = class(r)

      colat    the value(s) describing the angle between the point and the
               positive z-axis, measured in radians (also referred to
               as the polar angle).

               [1,n] = size(colat); double = class(colat)

      slon     the value(s) describing the angle of the projection of the
               point to the XY plane from the positive X-axis, measured
               in radians, with range:

                   -pi < slon <= pi

               The positive Y-axis is at longitude PI/2 radians.

               [1,n] = size(slon); double = class(slon)

   the call:

      [rectan] = cspice_sphrec( r, colat, slon )

   returns:

      rectan   the array(s) containing the rectangular coordinates of the
               position or set of positions

               [3,n] = size(rectan); double = class(rectan)

               The argument `rectan' returns in the same units associated
               with `r'.

               `rectan' returns with the same vectorization measure, N,
               as `r', `colat', and `slon'.

Parameters


   None.

Examples


   Any numerical results shown for these examples may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Compute the spherical coordinates of the position of the Moon
      as seen from the Earth, and convert them to rectangular
      coordinates.

      Use the meta-kernel shown below to load the required SPICE
      kernels.


         KPL/MK

         File name: sphrec_ex1.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            naif0012.tls                  Leapseconds


         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'naif0012.tls'  )

         \begintext

         End of meta-kernel


      Example code begins here.


      function sphrec_ex1()

         %
         % Load an SPK and leapseconds kernels.
         %
         cspice_furnsh( 'sphrec_ex1.tm' )

         %
         % Convert the time to ET.
         %
         et = cspice_str2et( '2017 Mar 20' );

         %
         % Retrieve the position of the moon seen from earth at `et'
         % in the J2000 frame without aberration correction.
         %
         [pos, et] = cspice_spkpos( 'MOON', et, 'J2000', 'NONE', 'EARTH' );

         fprintf( 'Original rectangular coordinates:\n' )
         fprintf( '   X            (km): %20.8f\n', pos(1) )
         fprintf( '   Y            (km): %20.8f\n', pos(2) )
         fprintf( '   Z            (km): %20.8f\n', pos(3) )

         %
         % Convert the position vector 'pos' to spherical
         % coordinates.
         %
         [radius, colat, slon] = cspice_recsph(pos);
         fprintf( '\n' )
         fprintf( 'Spherical coordinates:\n' )
         fprintf( '   Radius       (km): %20.8f\n', radius )
         fprintf( '   Polar Angle (deg): %20.8f\n', colat * cspice_dpr )
         fprintf( '   Longitude   (deg): %20.8f\n', slon  * cspice_dpr )

         %
         % Convert the spherical to rectangular.
         %
         [rectan]              = cspice_sphrec(radius, colat, slon);
         fprintf( '\n' )
         fprintf( 'Rectangular coordinates from cspice_sphrec:\n' )
         fprintf( '   X            (km): %20.8f\n', rectan(1) )
         fprintf( '   Y            (km): %20.8f\n', rectan(2) )
         fprintf( '   Z            (km): %20.8f\n', rectan(3) )

         %
         % It's always good form to unload kernels after use,
         % particularly in MATLAB due to data persistence.
         %
         cspice_kclear


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


      Original rectangular coordinates:
         X            (km):      -55658.44323296
         Y            (km):     -379226.32931475
         Z            (km):     -126505.93063865

      Spherical coordinates:
         Radius       (km):      403626.33912495
         Polar Angle (deg):         108.26566077
         Longitude   (deg):         -98.34959789

      Rectangular coordinates from cspice_sphrec:
         X            (km):      -55658.44323296
         Y            (km):     -379226.32931475
         Z            (km):     -126505.93063865


   2) Create a table showing a variety of spherical coordinates
      and the corresponding rectangular coordinates.

      Corresponding spherical and rectangular coordinates are
      listed to three decimal places. Input angles are in degrees.


      Example code begins here.


      function sphrec_ex2()
         %
         % Define eleven sets of spherical coordinates, `slon' and `colat'
         % expressed in degrees - converted to radians by use of cspice_rpd.
         %
         r     = [  0., 1., 1., 1., 1., 1., 1.,                           ...
                    sqrt(2), sqrt(2), sqrt(2), sqrt(3) ];
         colat = [  0., 90., 90., 0., 90., 90.,                           ...
                    180. 90., 45., 45., 54.7356] * cspice_rpd;
         slon  = [  0., 0., 90., 0., 180., -90.,                          ...
                    0., 45., 0., 90., 45] * cspice_rpd;

         %
         % ...convert the spherical coordinates to rectangular coordinates
         %
         rec = cspice_sphrec(r, colat, slon);

         %
         % Loop over each set of coordinates for output, convert  `colat' and
         % `slon' to degrees...
         %
         colat = colat * cspice_dpr;
         slon  = slon  * cspice_dpr;

         %
         % Output banner.
         %
         disp('    r      colat     slon   rect(1)  rect(2)  rect(3)')
         disp(' -------  -------  -------  -------  -------  -------')

         %
         % Create an array of values for output.
         %
         output = [ r; colat; slon; rec(1,:); rec(2,:); rec(3,:)];
         txt    = sprintf( '%8.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n', output );
         disp( txt )


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


          r      colat     slon   rect(1)  rect(2)  rect(3)
       -------  -------  -------  -------  -------  -------
         0.000    0.000    0.000    0.000    0.000    0.000
         1.000   90.000    0.000    1.000    0.000    0.000
         1.000   90.000   90.000    0.000    1.000    0.000
         1.000    0.000    0.000    0.000    0.000    1.000
         1.000   90.000  180.000   -1.000    0.000    0.000
         1.000   90.000  -90.000    0.000   -1.000    0.000
         1.000  180.000    0.000    0.000    0.000   -1.000
         1.414   90.000   45.000    1.000    1.000    0.000
         1.414   45.000    0.000    1.000    0.000    1.000
         1.414   45.000   90.000    0.000    1.000    1.000
         1.732   54.736   45.000    1.000    1.000    1.000


Particulars


   This routine returns the rectangular coordinates of a point
   whose position is input in spherical coordinates.

   Spherical coordinates are defined by a distance from a central
   reference point, an angle from a reference meridian, and an angle
   from the z-axis. The co-latitude of the positive Z-axis is
   zero. The longitude of the posive Y-axis is PI/2 radians.

Exceptions


   1)  If any of the input arguments, `r', `colat' or `slon', is
       undefined, an error is signaled by the Matlab error handling
       system.

   2)  If any of the input arguments, `r', `colat' or `slon', is not
       of the expected type, or it does not have the expected
       dimensions and size, an error is signaled by the Mice
       interface.

   3)  If the input vectorizable arguments `r', `colat' and `slon' do
       not have the same measure of vectorization (N), an error is
       signaled by the Mice interface.

Files


   None.

Restrictions


   None.

Required_Reading


   MICE.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)

Version


   -Mice Version 1.1.0, 24-AUG-2021 (EDW) (JDR)

       Changed the input argument name "lon" to "slon" for consistency
       with other routines.

       Edited the header to comply with NAIF standard. Added
       meta-kernel to example #1. Updated code example #1 to produce
       formatted output and added a call to cspice_kclear. Added the
       problem statement to both examples.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections, and
       completed -Particulars section.

       Eliminated use of "lasterror" in rethrow.

       Removed reference to the function's corresponding CSPICE header from
       -Required_Reading section.

   -Mice Version 1.0.1, 01-DEC-2014 (EDW)

       Edited -I/O section to conform to NAIF standard for Mice
       documentation.

   -Mice Version 1.0.0, 22-NOV-2005 (EDW)

Index_Entries


   spherical to rectangular coordinates


Fri Dec 31 18:44:26 2021