Table of contents
CSPICE_DRDSPH computes the Jacobian matrix of the transformation from
spherical to rectangular coordinates.
Given:
r the distance(s) of a point(s) from the origin.
[1,n] = size(r); double = class(r)
colat the angle(s) between the point(s) and the positive z-axis, in
radians.
[1,n] = size(colat); double = class(colat)
slon the angle(s) of the point(s) measured from the xz plane in
radians.
[1,n] = size(slon); double = class(slon)
The angle increases in the counterclockwise sense about
the +z axis.
the call:
[jacobi] = cspice_drdsph( r, colat, slon )
returns:
jacobi the matrix(es) of partial derivatives of the conversion between
spherical and rectangular coordinates, evaluated at the input
coordinates.
If [1,1] = size(r) then [3,3] = size(jacobi)
If [1,n] = size(r) then [3,3,n] = size(jacobi)
double = class(jacobi)
This matrix has the form:
.- -.
| dx/dr dx/dcolat dx/dslon |
| |
| dy/dr dy/dcolat dy/dslon |
| |
| dz/dr dz/dcolat dz/dslon |
`- -'
evaluated at the input values of `r', `slon' and `lat'.
Here `x', `y', and `z' are given by the familiar formulae
x = r*cos(slon)*sin(colat)
y = r*sin(slon)*sin(colat)
z = r*cos(colat)
`jacobi' returns with the same vectorization measure (N)
as `r', `colat' and `slon'.
None.
Any numerical results shown for this example may differ between
platforms as the results depend on the SPICE kernels used as input
and the machine specific arithmetic implementation.
1) Find the spherical state of the Earth as seen from
Mars in the IAU_MARS reference frame at January 1, 2005 TDB.
Map this state back to rectangular coordinates as a check.
Use the meta-kernel shown below to load the required SPICE
kernels.
KPL/MK
File name: drdsph_ex1.tm
This meta-kernel is intended to support operation of SPICE
example programs. The kernels shown here should not be
assumed to contain adequate or correct versions of data
required by SPICE-based user applications.
In order for an application to use this meta-kernel, the
kernels referenced here must be present in the user's
current working directory.
The names and contents of the kernels referenced
by this meta-kernel are as follows:
File name Contents
--------- --------
de421.bsp Planetary ephemeris
pck00010.tpc Planet orientation and
radii
naif0009.tls Leapseconds
\begindata
KERNELS_TO_LOAD = ( 'de421.bsp',
'pck00010.tpc',
'naif0009.tls' )
\begintext
End of meta-kernel
Example code begins here.
function drdsph_ex1()
%
% Load SPK, PCK and LSK kernels, use a meta kernel for
% convenience.
%
cspice_furnsh( 'drdsph_ex1.tm' );
%
% Look up the apparent state of earth as seen from Mars
% at January 1, 2005 TDB, relative to the IAU_MARS reference
% frame.
%
[et] = cspice_str2et( 'January 1, 2005 TDB' );
[state, lt] = cspice_spkezr( 'Earth', et, 'IAU_MARS', ...
'LT+S', 'Mars' );
%
% Convert position to spherical coordinates.
%
[r, colat, slon] = cspice_recsph( state(1:3) );
%
% Convert velocity to spherical coordinates.
%
[jacobi] = cspice_dsphdr( state(1), state(2), state(3) );
sphvel = jacobi * state(4:6);
%
% As a check, convert the spherical state back to
% rectangular coordinates.
%
[rectan] = cspice_sphrec( r, colat, slon );
[jacobi] = cspice_drdsph( r, colat, slon );
drectn = jacobi * sphvel;
fprintf( ' \n' )
fprintf( 'Rectangular coordinates:\n' )
fprintf( ' \n' )
fprintf( ' X (km) = %17.8e\n', state(1) )
fprintf( ' Y (km) = %17.8e\n', state(2) )
fprintf( ' Z (km) = %17.8e\n', state(3) )
fprintf( ' \n' )
fprintf( 'Rectangular velocity:\n' )
fprintf( ' \n' )
fprintf( ' dX/dt (km/s) = %17.8e\n', state(4) )
fprintf( ' dY/dt (km/s) = %17.8e\n', state(5) )
fprintf( ' dZ/dt (km/s) = %17.8e\n', state(6) )
fprintf( ' \n' )
fprintf( 'Spherical coordinates:\n' )
fprintf( ' \n' )
fprintf( ' Radius (km) = %17.8e\n', r )
fprintf( ' Colatitude (deg) = %17.8e\n', colat/cspice_rpd )
fprintf( ' Longitude (deg) = %17.8e\n', slon/cspice_rpd )
fprintf( ' \n' )
fprintf( 'Spherical velocity:\n' )
fprintf( ' \n' )
fprintf( ' d Radius/dt (km/s) = %17.8e\n', sphvel(1) )
fprintf( ' d Colatitude/dt (deg/s) = %17.8e\n', ...
sphvel(2)/cspice_rpd )
fprintf( ' d Longitude/dt (deg/s) = %17.8e\n', ...
sphvel(3)/cspice_rpd )
fprintf( ' \n' )
fprintf( 'Rectangular coordinates from inverse mapping:\n' )
fprintf( ' \n' )
fprintf( ' X (km) = %17.8e\n', rectan(1) )
fprintf( ' Y (km) = %17.8e\n', rectan(2) )
fprintf( ' Z (km) = %17.8e\n', rectan(3) )
fprintf( ' \n' )
fprintf( 'Rectangular velocity from inverse mapping:\n' )
fprintf( ' \n' )
fprintf( ' dX/dt (km/s) = %17.8e\n', drectn(1) )
fprintf( ' dY/dt (km/s) = %17.8e\n', drectn(2) )
fprintf( ' dZ/dt (km/s) = %17.8e\n', drectn(3) )
fprintf( ' \n' )
%
% It's always good form to unload kernels after use,
% particularly in Matlab due to data persistence.
%
cspice_kclear
When this program was executed on a Mac/Intel/Octave6.x/64-bit
platform, the output was:
Rectangular coordinates:
X (km) = -7.60961826e+07
Y (km) = 3.24363805e+08
Z (km) = 4.74704840e+07
Rectangular velocity:
dX/dt (km/s) = 2.29520749e+04
dY/dt (km/s) = 5.37601112e+03
dZ/dt (km/s) = -2.08811490e+01
Spherical coordinates:
Radius (km) = 3.36535219e+08
Colatitude (deg) = 8.18910134e+01
Longitude (deg) = 1.03202903e+02
Spherical velocity:
d Radius/dt (km/s) = -1.12116011e+01
d Colatitude/dt (deg/s) = 3.31899303e-06
d Longitude/dt (deg/s) = -4.05392876e-03
Rectangular coordinates from inverse mapping:
X (km) = -7.60961826e+07
Y (km) = 3.24363805e+08
Z (km) = 4.74704840e+07
Rectangular velocity from inverse mapping:
dX/dt (km/s) = 2.29520749e+04
dY/dt (km/s) = 5.37601112e+03
dZ/dt (km/s) = -2.08811490e+01
It is often convenient to describe the motion of an object in
the spherical coordinate system. However, when performing
vector computations its hard to beat rectangular coordinates.
To transform states given with respect to spherical coordinates
to states with respect to rectangular coordinates, one uses
the Jacobian of the transformation between the two systems.
Given a state in spherical coordinates
( r, colat, slon, dr, dcolat, dslon )
the velocity in rectangular coordinates is given by the matrix
equation:
t | t
(dx, dy, dz) = jacobi| * (dr, dcolat, dslon )
|(r,colat,slon)
This routine computes the matrix
|
jacobi|
|(r,colat,slon)
1) If any of the input arguments, `r', `colat' or `slon', is
undefined, an error is signaled by the Matlab error handling
system.
2) If any of the input arguments, `r', `colat' or `slon', is not
of the expected type, or it does not have the expected
dimensions and size, an error is signaled by the Mice
interface.
3) If the input vectorizable arguments `r', `colat' and `slon' do
not have the same measure of vectorization (N), an error is
signaled by the Mice interface.
None.
None.
MICE.REQ
None.
J. Diaz del Rio (ODC Space)
S.C. Krening (JPL)
E.D. Wright (JPL)
-Mice Version 1.1.0, 01-NOV-2021 (EDW) (JDR)
Edited the header to comply with NAIF standard.
Added complete code example.
Changed the input argument name "lon" to "slon" for consistency
with other routines.
Added -Parameters, -Exceptions, -Files, -Restrictions,
-Literature_References and -Author_and_Institution sections.
Eliminated use of "lasterror" in rethrow.
Removed reference to the function's corresponding CSPICE header from
-Required_Reading section.
-Mice Version 1.0.0, 09-NOV-2012 (EDW) (SCK)
Jacobian of rectangular w.r.t. spherical coordinates
|