Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
sphlat

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     SPHLAT ( Spherical to latitudinal coordinates )

     SUBROUTINE SPHLAT ( R, COLAT, SLON, RADIUS, LON, LAT )

Abstract

     Convert from spherical coordinates to latitudinal coordinates.

Required_Reading

     None.

Keywords

     CONVERSION
     COORDINATES

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION R
     DOUBLE PRECISION COLAT
     DOUBLE PRECISION SLON
     DOUBLE PRECISION RADIUS
     DOUBLE PRECISION LON
     DOUBLE PRECISION LAT

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     R          I   Distance of the point from the origin.
     COLAT      I   Angle of the point from positive Z axis (radians).
     SLON       I   Angle of the point from the XZ plane (radians).
     RADIUS     O   Distance of a point from the origin
     LON        O   Angle of the point from the XZ plane in radians
     LAT        O   Angle of the point from the XY plane in radians

Detailed_Input

     R        is the distance of the point from the origin.

     COLAT    is the angle between the vector from the origin to the
              point and the positive Z-axis in radians.

     SLON     is the angle of the point from the XZ plane (radians).

Detailed_Output

     RADIUS   is the distance of a point from the origin.

     LON      is the angle of the point from the XZ plane in
              radians. LON is set equal to SLON.

     LAT      is the angle of the point from the XY plane in
              radians. LAT is computed as pi/2 - COLAT.

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     This routine returns the latitudinal coordinates of a point
     whose position is input in spherical coordinates.

     Latitudinal coordinates are defined by a distance from a central
     reference point, an angle from a reference meridian, and an angle
     above the equator of a sphere centered at the central reference
     point.

     Spherical coordinates are defined by a distance from a central
     reference point, an angle from a reference meridian, and an angle
     from the Z-axis.

Examples

     The numerical results shown for these examples may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Latitude is obtained by subtracting co-latitude from HALFPI
        Radius and longitude mean the same thing in both latitudinal
        and spherical coordinates. The table below lists LAT and
        corresponding COLAT in terms of degrees.

             LAT     COLAT
            -----    -----
               0        90
              20        70
              45        45
             -30       120
              90         0
             -45       135


     2) Compute the spherical coordinates of the position of the Moon
        as seen from the Earth, and convert them to latitudinal and
        rectangular coordinates.

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: sphlat_ex2.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                     Contents
              ---------                     --------
              de421.bsp                     Planetary ephemeris
              naif0012.tls                  Leapseconds


           \begindata

              KERNELS_TO_LOAD = ( 'de421.bsp',
                                  'naif0012.tls'  )

           \begintext

           End of meta-kernel


        Example code begins here.


              PROGRAM SPHLAT_EX2
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1 = '(A,F20.8)' )

        C
        C     Local variables
        C
              DOUBLE PRECISION      COLAT
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      POS    ( 3 )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      RECTAN ( 3 )
              DOUBLE PRECISION      SLON
              DOUBLE PRECISION      Z

        C
        C     Load SPK and LSK kernels, use a meta kernel for
        C     convenience.
        C
              CALL FURNSH ( 'sphlat_ex2.tm' )

        C
        C     Look up the geometric state of the Moon as seen from
        C     the Earth at 2017 Mar 20, relative to the J2000
        C     reference frame.
        C
              CALL STR2ET ( '2017 Mar 20', ET )

              CALL SPKPOS ( 'Moon',  ET,  'J2000', 'NONE',
             .              'Earth', POS, LT               )

        C
        C     Convert the position vector POS to spherical
        C     coordinates.
        C
              CALL RECSPH ( POS, R, COLAT, SLON )

        C
        C     Convert the spherical coordinates to latitudinal.
        C
              CALL SPHLAT ( R, COLAT, SLON, RADIUS, LON, LAT )

        C
        C     Convert the latitudinal coordinates to rectangular.
        C
              CALL LATREC ( RADIUS, LON, LAT, RECTAN )


              WRITE(*,*) ' '
              WRITE(*,*) 'Original rectangular coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X           (km): ', POS(1)
              WRITE(*,FMT1) '  Y           (km): ', POS(2)
              WRITE(*,FMT1) '  Z           (km): ', POS(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Spherical coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius      (km): ', R
              WRITE(*,FMT1) '  Colatitude (deg): ', COLAT*DPR()
              WRITE(*,FMT1) '  Longitude  (deg): ', SLON*DPR()
              WRITE(*,*) ' '
              WRITE(*,*) 'Latitudinal coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius      (km): ', RADIUS
              WRITE(*,FMT1) '  Longitude  (deg): ', LON*DPR()
              WRITE(*,FMT1) '  Latitude   (deg): ', LAT*DPR()
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates from LATREC:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X           (km): ', RECTAN(1)
              WRITE(*,FMT1) '  Y           (km): ', RECTAN(2)
              WRITE(*,FMT1) '  Z           (km): ', RECTAN(3)
              WRITE(*,*) ' '

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Original rectangular coordinates:

          X           (km):      -55658.44323296
          Y           (km):     -379226.32931475
          Z           (km):     -126505.93063865

         Spherical coordinates:

          Radius      (km):      403626.33912495
          Colatitude (deg):         108.26566077
          Longitude  (deg):         -98.34959789

         Latitudinal coordinates:

          Radius      (km):      403626.33912495
          Longitude  (deg):         -98.34959789
          Latitude   (deg):         -18.26566077

         Rectangular coordinates from LATREC:

          X           (km):      -55658.44323296
          Y           (km):     -379226.32931475
          Z           (km):     -126505.93063865


     3) Create a table showing a variety of spherical coordinates
        and the corresponding cylindrical coordinates.

        Corresponding spherical and cylindrical coordinates are
        listed to three decimal places. Input and output angles
        are in degrees.


        Example code begins here.


              PROGRAM SPHLAT_EX3
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR
              DOUBLE PRECISION      RPD

        C
        C     Local parameters.
        C
              INTEGER               NREC
              PARAMETER           ( NREC = 11 )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      COLAT  ( NREC )
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      R      ( NREC )
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      RCOLAT
              DOUBLE PRECISION      RSLON
              DOUBLE PRECISION      SLON   ( NREC )

              INTEGER               I

        C
        C     Define the input spherical coordinates. Angles in
        C     degrees.
        C
              DATA                 R      / 0.D0, 1.D0,     1.D0,
             .                              1.D0, 1.4142D0, 1.D0,
             .                              1.D0, 1.D0,     1.4142D0,
             .                              1.D0, 0.D0               /

              DATA                 COLAT /  0.D0,   90.D0,  90.D0,
             .                              0.D0,   45.D0,  90.D0,
             .                            180.D0,   90.D0, 135.D0,
             .                              0.D0,   90.D0            /

              DATA                 SLON  /  0.D0,    0.D0,  90.D0,
             .                              0.D0,  180.D0, -90.D0,
             .                              0.D0,   45.D0, 180.D0,
             .                             180.D0,  33.D0            /

        C
        C     Print the banner.
        C
              WRITE(*,*) '     R     COLAT     SLON  '
             . //        '  RADIUS    LON      LAT   '
              WRITE(*,*) ' -------  -------  ------- '
             . //        ' -------  -------  ------- '

        C
        C     Do the conversion. Output angles in degrees.
        C
              DO I = 1, NREC

                 RCOLAT = COLAT(I) * RPD()
                 RSLON  = SLON(I)  * RPD()

                 CALL SPHLAT( R(I), RCOLAT, RSLON, RADIUS, LON, LAT )

                 WRITE (*,'(6F9.3)') R(I), COLAT(I), SLON(I),
             .                       RADIUS, LON * DPR(), LAT * DPR()

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


              R     COLAT     SLON    RADIUS    LON      LAT
          -------  -------  -------  -------  -------  -------
            0.000    0.000    0.000    0.000    0.000   90.000
            1.000   90.000    0.000    1.000    0.000    0.000
            1.000   90.000   90.000    1.000   90.000    0.000
            1.000    0.000    0.000    1.000    0.000   90.000
            1.414   45.000  180.000    1.414  180.000   45.000
            1.000   90.000  -90.000    1.000  -90.000    0.000
            1.000  180.000    0.000    1.000    0.000  -90.000
            1.000   90.000   45.000    1.000   45.000    0.000
            1.414  135.000  180.000    1.414  180.000  -45.000
            1.000    0.000  180.000    1.000  180.000   90.000
            0.000   90.000   33.000    0.000   33.000    0.000

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     B.V. Semenov       (JPL)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 05-JUL-2021 (JDR)

        Changed the argument names LONGS and LONG to SLON and LON for
        consistency with other routines.

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Removed
        unnecessary $Revisions section. Added complete code examples.

    SPICELIB Version 1.0.2, 26-JUL-2016 (BVS)

        Minor headers edits.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT)
Fri Dec 31 18:36:50 2021