sphcyl |
Table of contents
ProcedureSPHCYL ( Spherical to cylindrical coordinates ) SUBROUTINE SPHCYL ( RADIUS, COLAT, SLON, R, CLON, Z ) AbstractConvert from spherical coordinates to cylindrical coordinates. Required_ReadingNone. KeywordsCONVERSION COORDINATES DeclarationsIMPLICIT NONE DOUBLE PRECISION RADIUS DOUBLE PRECISION COLAT DOUBLE PRECISION SLON DOUBLE PRECISION R DOUBLE PRECISION CLON DOUBLE PRECISION Z Brief_I/OVARIABLE I/O DESCRIPTION -------- --- ------------------------------------------------- RADIUS I Distance of point from origin. COLAT I Polar angle (co-latitude in radians) of point. SLON I Azimuthal angle (longitude) of point (radians). R O Distance of point from Z axis. CLON O Angle (radians) of point from XZ plane. Z O Height of point above XY plane. Detailed_InputRADIUS is the distance of the point from origin. COLAT is the polar angle (co-latitude in radians) of the point. SLON is the azimuthal angle (longitude) of the point (radians). Detailed_OutputR is the distance of the point of interest from Z-axis. CLON is the cylindrical angle (radians) of the point from the XZ plane. CLON is set equal to SLON. Z is the height of the point above XY plane. ParametersNone. ExceptionsError free. FilesNone. ParticularsThis returns the cylindrical coordinates of a point whose position is input through spherical coordinates. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Compute the spherical coordinates of the position of the Moon as seen from the Earth, and convert them to cylindrical and rectangular coordinates. Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: sphcyl_ex1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de421.bsp Planetary ephemeris naif0012.tls Leapseconds \begindata KERNELS_TO_LOAD = ( 'de421.bsp', 'naif0012.tls' ) \begintext End of meta-kernel Example code begins here. PROGRAM SPHCYL_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F20.8)' ) C C Local variables C DOUBLE PRECISION CLON DOUBLE PRECISION COLAT DOUBLE PRECISION ET DOUBLE PRECISION LT DOUBLE PRECISION POS ( 3 ) DOUBLE PRECISION R DOUBLE PRECISION RADIUS DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION SLON DOUBLE PRECISION Z C C Load SPK and LSK kernels, use a meta kernel for C convenience. C CALL FURNSH ( 'sphcyl_ex1.tm' ) C C Look up the geometric state of the Moon as seen from C the Earth at 2017 Mar 20, relative to the J2000 C reference frame. C CALL STR2ET ( '2017 Mar 20', ET ) CALL SPKPOS ( 'Moon', ET, 'J2000', 'NONE', . 'Earth', POS, LT ) C C Convert the position vector POS to spherical C coordinates. C CALL RECSPH ( POS, RADIUS, COLAT, SLON ) C C Convert the spherical coordinates to cylindrical. C CALL SPHCYL ( RADIUS, COLAT, SLON, R, CLON, Z ) C C Convert the cylindrical coordinates to rectangular. C CALL CYLREC ( R, CLON, Z, RECTAN ) WRITE(*,*) ' ' WRITE(*,*) 'Original rectangular coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', POS(1) WRITE(*,FMT1) ' Y (km): ', POS(2) WRITE(*,FMT1) ' Z (km): ', POS(3) WRITE(*,*) ' ' WRITE(*,*) 'Spherical coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', RADIUS WRITE(*,FMT1) ' Colatitude (deg): ', COLAT*DPR() WRITE(*,FMT1) ' Longitude (deg): ', SLON*DPR() WRITE(*,*) ' ' WRITE(*,*) 'Cylindrical coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', R WRITE(*,FMT1) ' Longitude (deg): ', CLON*DPR() WRITE(*,FMT1) ' Z (km): ', Z WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates from CYLREC:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', RECTAN(1) WRITE(*,FMT1) ' Y (km): ', RECTAN(2) WRITE(*,FMT1) ' Z (km): ', RECTAN(3) WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Original rectangular coordinates: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 Spherical coordinates: Radius (km): 403626.33912495 Colatitude (deg): 108.26566077 Longitude (deg): -98.34959789 Cylindrical coordinates: Radius (km): 383289.01777726 Longitude (deg): -98.34959789 Z (km): -126505.93063865 Rectangular coordinates from CYLREC: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 2) Create a table showing a variety of spherical coordinates and the corresponding cylindrical coordinates. Corresponding spherical and cylindrical coordinates are listed to three decimal places. Input and output angles are in degrees. Example code begins here. PROGRAM SPHCYL_EX2 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR DOUBLE PRECISION RPD C C Local parameters. C INTEGER NREC PARAMETER ( NREC = 11 ) C C Local variables. C DOUBLE PRECISION CLON DOUBLE PRECISION COLAT ( NREC ) DOUBLE PRECISION R DOUBLE PRECISION RADIUS ( NREC ) DOUBLE PRECISION RCOLAT DOUBLE PRECISION RSLON DOUBLE PRECISION SLON ( NREC ) DOUBLE PRECISION Z INTEGER I C C Define the input spherical coordinates. Input angles C in degrees. C DATA RADIUS / 0.D0, 1.D0, 1.D0, . 1.D0, 1.4142D0, 1.D0, . 1.D0, 1.D0, 1.4142D0, . 1.D0, 0.D0 / DATA COLAT / 0.D0, 90.D0, 90.D0, . 0.D0, 45.D0, 90.D0, . 180.D0, 90.D0, 135.D0, . 0.D0, 90.D0 / DATA SLON / 0.D0, 0.D0, 90.D0, . 0.D0, 180.D0, -90.D0, . 0.D0, 45.D0, 180.D0, . 180.D0, 33.D0 / C C Print the banner. C WRITE(*,*) ' RADIUS COLAT SLON ' . // ' R CLON Z ' WRITE(*,*) ' ------- ------- ------- ' . // ' ------- ------- ------- ' C C Do the conversion. Output angles in degrees. C DO I = 1, NREC RCOLAT = COLAT(I) * RPD() RSLON = SLON(I) * RPD() CALL SPHCYL( RADIUS(I), RCOLAT, RSLON, R, CLON, Z ) WRITE (*,'(6F9.3)') RADIUS(I), COLAT(I), SLON(I), . R, CLON * DPR(), Z END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: RADIUS COLAT SLON R CLON Z ------- ------- ------- ------- ------- ------- 0.000 0.000 0.000 0.000 0.000 0.000 1.000 90.000 0.000 1.000 0.000 0.000 1.000 90.000 90.000 1.000 90.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 1.414 45.000 180.000 1.000 180.000 1.000 1.000 90.000 -90.000 1.000 -90.000 0.000 1.000 180.000 0.000 0.000 0.000 -1.000 1.000 90.000 45.000 1.000 45.000 0.000 1.414 135.000 180.000 1.000 180.000 -1.000 1.000 0.000 180.000 0.000 180.000 1.000 0.000 90.000 33.000 0.000 33.000 0.000 3) Other than the obvious conversion between coordinate systems this routine could be used to obtain the axial projection from a sphere to a cylinder about the z-axis that contains the equator of the sphere. Such a projection is valuable because it preserves the areas between regions on the sphere and their projections to the cylinder. Example code begins here. PROGRAM SPHCYL_EX3 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR DOUBLE PRECISION RPD C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F23.11)' ) C C Local variables C DOUBLE PRECISION CLON DOUBLE PRECISION COLAT DOUBLE PRECISION RADIUS DOUBLE PRECISION R DOUBLE PRECISION SLON DOUBLE PRECISION Z C C Define the point whose projection is to be C computed. C RADIUS = 100.D0 SLON = 45.D0 * RPD() COLAT = 102.5D0 * RPD() C C Convert the spherical coordinates to cylindrical. C CALL SPHCYL ( RADIUS, COLAT, SLON, R, CLON, Z ) WRITE(*,*) 'Coordinates of the projected point on ' . // 'cylinder:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', R WRITE(*,FMT1) ' Longitude (deg): ', CLON*DPR() WRITE(*,FMT1) ' Z (km): ', Z END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Coordinates of the projected point on cylinder: Radius (km): 97.62960071199 Longitude (deg): 45.00000000000 Z (km): -21.64396139381 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionJ. Diaz del Rio (ODC Space) B.V. Semenov (JPL) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 05-JUL-2021 (JDR) Changed the argument names LONGS and LONG to SLON and CLON for consistency with other routines. Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Removed unnecessary $Revisions section. Added complete code examples. SPICELIB Version 1.0.2, 26-JUL-2016 (BVS) Minor headers edits. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 31-JAN-1990 (WLT) |
Fri Dec 31 18:36:50 2021