Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
latcyl

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     LATCYL ( Latitudinal to cylindrical coordinates )

     SUBROUTINE LATCYL ( RADIUS, LON, LAT, R, CLON, Z )

Abstract

     Convert from latitudinal coordinates to cylindrical coordinates.

Required_Reading

     None.

Keywords

     CONVERSION
     COORDINATES

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION   RADIUS
     DOUBLE PRECISION   LON
     DOUBLE PRECISION   LAT
     DOUBLE PRECISION   R
     DOUBLE PRECISION   CLON
     DOUBLE PRECISION   Z

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     RADIUS     I   Distance of a point from the origin.
     LON        I   Angle of the point from the XZ plane in radians.
     LAT        I   Angle of the point from the XY plane in radians.
     R          O   Distance of the point from the Z axis.
     CLON       O   Angle of the point from the XZ plane in radians.
     Z          O   Height of the point above the XY plane.

Detailed_Input

     RADIUS   is the distance of a point from the origin.

     LON      is the angle of the point from the XZ plane in
              radians.

     LAT      is the angle of the point from the XY plane in
              radians.

Detailed_Output

     R        is the distance of the point from the Z-axis.

     CLON     is the angle of the point from the XZ plane in
              radians. CLON is set equal to LON.

     Z        is the height of the point above the XY plane.

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     This routine returns the cylindrical coordinates of a point
     whose position is input in latitudinal coordinates.

     Latitudinal coordinates are defined by a distance from a central
     reference point, an angle from a reference meridian, and an angle
     above the equator of a sphere centered at the central reference
     point.

Examples

     The numerical results shown for these examples may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Compute the latitudinal coordinates of the position of the Moon
        as seen from the Earth, and convert them to cylindrical and
        rectangular coordinates.

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: latcyl_ex1.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                     Contents
              ---------                     --------
              de421.bsp                     Planetary ephemeris
              naif0012.tls                  Leapseconds


           \begindata

              KERNELS_TO_LOAD = ( 'de421.bsp',
                                  'naif0012.tls'  )

           \begintext

           End of meta-kernel


        Example code begins here.


              PROGRAM LATCYL_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1 = '(A,F20.8)' )

        C
        C     Local variables
        C
              DOUBLE PRECISION      CLON
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      POS    ( 3 )
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      RECTAN ( 3 )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      Z

        C
        C     Load SPK and LSK kernels, use a meta kernel for
        C     convenience.
        C
              CALL FURNSH ( 'latcyl_ex1.tm' )

        C
        C     Look up the geometric state of the Moon as seen from
        C     the Earth at 2017 Mar 20, relative to the J2000
        C     reference frame.
        C
              CALL STR2ET ( '2017 Mar 20', ET )

              CALL SPKPOS ( 'Moon',  ET,  'J2000', 'NONE',
             .              'Earth', POS, LT               )

        C
        C     Convert the position vector POS to latitudinal
        C     coordinates.
        C
              CALL RECLAT ( POS, RADIUS, LON, LAT )

        C
        C     Convert the latitudinal coordinates to cylindrical.
        C
              CALL LATCYL ( RADIUS, LON, LAT, R, CLON, Z )

        C
        C     Convert the cylindrical coordinates to rectangular.
        C
              CALL CYLREC ( R, CLON, Z, RECTAN )


              WRITE(*,*) ' '
              WRITE(*,*) 'Original rectangular coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X          (km): ', POS(1)
              WRITE(*,FMT1) '  Y          (km): ', POS(2)
              WRITE(*,FMT1) '  Z          (km): ', POS(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Latitudinal coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius     (km): ', RADIUS
              WRITE(*,FMT1) '  Longitude (deg): ', LON*DPR()
              WRITE(*,FMT1) '  Latitude  (deg): ', LAT*DPR()
              WRITE(*,*) ' '
              WRITE(*,*) 'Cylindrical coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius     (km): ', R
              WRITE(*,FMT1) '  Longitude (deg): ', CLON*DPR()
              WRITE(*,FMT1) '  Z          (km): ', Z
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates from CYLREC:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X          (km): ', RECTAN(1)
              WRITE(*,FMT1) '  Y          (km): ', RECTAN(2)
              WRITE(*,FMT1) '  Z          (km): ', RECTAN(3)
              WRITE(*,*) ' '

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Original rectangular coordinates:

          X          (km):      -55658.44323296
          Y          (km):     -379226.32931475
          Z          (km):     -126505.93063865

         Latitudinal coordinates:

          Radius     (km):      403626.33912495
          Longitude (deg):         -98.34959789
          Latitude  (deg):         -18.26566077

         Cylindrical coordinates:

          Radius     (km):      383289.01777726
          Longitude (deg):         -98.34959789
          Z          (km):     -126505.93063865

         Rectangular coordinates from CYLREC:

          X          (km):      -55658.44323296
          Y          (km):     -379226.32931475
          Z          (km):     -126505.93063865


     2) Create a table showing a variety of latitudinal coordinates
        and the corresponding cylindrical coordinates.

        Corresponding latitudinal and cylindrical coordinates are
        listed to three decimal places. Input and output angles are
        in degrees.


        Example code begins here.


              PROGRAM LATCYL_EX2
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR
              DOUBLE PRECISION      RPD

        C
        C     Local parameters.
        C
              INTEGER               NREC
              PARAMETER           ( NREC = 11 )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      CLON
              DOUBLE PRECISION      LAT    ( NREC )
              DOUBLE PRECISION      LON    ( NREC )
              DOUBLE PRECISION      RADIUS ( NREC )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      RLAT
              DOUBLE PRECISION      RLON
              DOUBLE PRECISION      Z

              INTEGER               I

        C
        C     Define the input latitudinal coordinates. Angles in
        C     degrees.
        C

              DATA                 RADIUS / 0.D0, 1.D0,     1.D0,
             .                              1.D0, 1.4142D0, 1.D0,
             .                              1.D0, 1.D0,     1.4142D0,
             .                              1.D0, 0.D0               /

              DATA                 LON   /  0.D0,    0.D0,  90.D0,
             .                              0.D0,  180.D0, -90.D0,
             .                              0.D0,   45.D0, 180.D0,
             .                             180.D0,  33.D0            /

              DATA                 LAT   / 90.D0,    0.D0,   0.D0,
             .                             90.D0,   45.D0,   0.D0,
             .                            -90.D0,    0.D0, -45.D0,
             .                             90.D0,    0.D0            /

        C
        C     Print the banner.
        C
              WRITE(*,*) '  RADIUS    LON      LAT   '
             . //        '    R       CLON      Z    '
              WRITE(*,*) ' -------  -------  ------- '
             . //        ' -------  -------  ------- '

        C
        C     Do the conversion. Output angles in degrees.
        C
              DO I = 1, NREC

                 RLON = LON(I) * RPD()
                 RLAT = LAT(I) * RPD()

                 CALL LATCYL( RADIUS(I), RLON, RLAT, R, CLON, Z )

                 WRITE (*,'(6F9.3)') RADIUS(I), LON(I), LAT(I),
             .                       R, CLON * DPR(), Z

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


           RADIUS    LON      LAT       R       CLON      Z
          -------  -------  -------  -------  -------  -------
            0.000    0.000   90.000    0.000    0.000    0.000
            1.000    0.000    0.000    1.000    0.000    0.000
            1.000   90.000    0.000    1.000   90.000    0.000
            1.000    0.000   90.000    0.000    0.000    1.000
            1.414  180.000   45.000    1.000  180.000    1.000
            1.000  -90.000    0.000    1.000  -90.000    0.000
            1.000    0.000  -90.000    0.000    0.000   -1.000
            1.000   45.000    0.000    1.000   45.000    0.000
            1.414  180.000  -45.000    1.000  180.000   -1.000
            1.000  180.000   90.000    0.000  180.000    1.000
            0.000   33.000    0.000    0.000   33.000    0.000


     3) Other than the obvious conversion between coordinate systems
        this routine could be used to obtain the axial projection
        from a sphere to a cylinder about the z-axis that contains
        the equator of the sphere.

        Such a projection is valuable because it preserves the
        areas between regions on the sphere and their projections to
        the cylinder.


        Example code begins here.


              PROGRAM LATCYL_EX3
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR
              DOUBLE PRECISION      RPD

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1 = '(A,F23.11)' )

        C
        C     Local variables
        C
              DOUBLE PRECISION      CLON
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      R
              DOUBLE PRECISION      Z

        C
        C     Define the point whose projection is to be
        C     computed.
        C
              RADIUS =  100.D0
              LON    =   45.D0  * RPD()
              LAT    =  -12.5D0 * RPD()

        C
        C     Convert the latitudinal coordinates to cylindrical.
        C
              CALL LATCYL ( RADIUS, LON, LAT, R, CLON, Z )

              WRITE(*,*) 'Coordinates of the projected point on '
             .        // 'cylinder:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius     (km): ', R
              WRITE(*,FMT1) '  Longitude (deg): ', CLON*DPR()
              WRITE(*,FMT1) '  Z          (km): ', Z

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Coordinates of the projected point on cylinder:

          Radius     (km):          97.62960071199
          Longitude (deg):          45.00000000000
          Z          (km):         -21.64396139381

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     B.V. Semenov       (JPL)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 06-JUL-2021 (JDR)

        Changed the argument names LONG and LONGC to LON and CLON for
        consistency with other routines.

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Removed
        unnecessary $Revisions section.

        Added complete code examples.

    SPICELIB Version 1.0.2, 26-JUL-2016 (BVS)

        Minor headers edits.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT)
Fri Dec 31 18:36:30 2021