latcyl |
Table of contents
ProcedureLATCYL ( Latitudinal to cylindrical coordinates ) SUBROUTINE LATCYL ( RADIUS, LON, LAT, R, CLON, Z ) AbstractConvert from latitudinal coordinates to cylindrical coordinates. Required_ReadingNone. KeywordsCONVERSION COORDINATES DeclarationsIMPLICIT NONE DOUBLE PRECISION RADIUS DOUBLE PRECISION LON DOUBLE PRECISION LAT DOUBLE PRECISION R DOUBLE PRECISION CLON DOUBLE PRECISION Z Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- RADIUS I Distance of a point from the origin. LON I Angle of the point from the XZ plane in radians. LAT I Angle of the point from the XY plane in radians. R O Distance of the point from the Z axis. CLON O Angle of the point from the XZ plane in radians. Z O Height of the point above the XY plane. Detailed_InputRADIUS is the distance of a point from the origin. LON is the angle of the point from the XZ plane in radians. LAT is the angle of the point from the XY plane in radians. Detailed_OutputR is the distance of the point from the Z-axis. CLON is the angle of the point from the XZ plane in radians. CLON is set equal to LON. Z is the height of the point above the XY plane. ParametersNone. ExceptionsError free. FilesNone. ParticularsThis routine returns the cylindrical coordinates of a point whose position is input in latitudinal coordinates. Latitudinal coordinates are defined by a distance from a central reference point, an angle from a reference meridian, and an angle above the equator of a sphere centered at the central reference point. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Compute the latitudinal coordinates of the position of the Moon as seen from the Earth, and convert them to cylindrical and rectangular coordinates. Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: latcyl_ex1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de421.bsp Planetary ephemeris naif0012.tls Leapseconds \begindata KERNELS_TO_LOAD = ( 'de421.bsp', 'naif0012.tls' ) \begintext End of meta-kernel Example code begins here. PROGRAM LATCYL_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F20.8)' ) C C Local variables C DOUBLE PRECISION CLON DOUBLE PRECISION ET DOUBLE PRECISION LAT DOUBLE PRECISION LON DOUBLE PRECISION LT DOUBLE PRECISION POS ( 3 ) DOUBLE PRECISION RADIUS DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION R DOUBLE PRECISION Z C C Load SPK and LSK kernels, use a meta kernel for C convenience. C CALL FURNSH ( 'latcyl_ex1.tm' ) C C Look up the geometric state of the Moon as seen from C the Earth at 2017 Mar 20, relative to the J2000 C reference frame. C CALL STR2ET ( '2017 Mar 20', ET ) CALL SPKPOS ( 'Moon', ET, 'J2000', 'NONE', . 'Earth', POS, LT ) C C Convert the position vector POS to latitudinal C coordinates. C CALL RECLAT ( POS, RADIUS, LON, LAT ) C C Convert the latitudinal coordinates to cylindrical. C CALL LATCYL ( RADIUS, LON, LAT, R, CLON, Z ) C C Convert the cylindrical coordinates to rectangular. C CALL CYLREC ( R, CLON, Z, RECTAN ) WRITE(*,*) ' ' WRITE(*,*) 'Original rectangular coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', POS(1) WRITE(*,FMT1) ' Y (km): ', POS(2) WRITE(*,FMT1) ' Z (km): ', POS(3) WRITE(*,*) ' ' WRITE(*,*) 'Latitudinal coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', RADIUS WRITE(*,FMT1) ' Longitude (deg): ', LON*DPR() WRITE(*,FMT1) ' Latitude (deg): ', LAT*DPR() WRITE(*,*) ' ' WRITE(*,*) 'Cylindrical coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', R WRITE(*,FMT1) ' Longitude (deg): ', CLON*DPR() WRITE(*,FMT1) ' Z (km): ', Z WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates from CYLREC:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km): ', RECTAN(1) WRITE(*,FMT1) ' Y (km): ', RECTAN(2) WRITE(*,FMT1) ' Z (km): ', RECTAN(3) WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Original rectangular coordinates: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 Latitudinal coordinates: Radius (km): 403626.33912495 Longitude (deg): -98.34959789 Latitude (deg): -18.26566077 Cylindrical coordinates: Radius (km): 383289.01777726 Longitude (deg): -98.34959789 Z (km): -126505.93063865 Rectangular coordinates from CYLREC: X (km): -55658.44323296 Y (km): -379226.32931475 Z (km): -126505.93063865 2) Create a table showing a variety of latitudinal coordinates and the corresponding cylindrical coordinates. Corresponding latitudinal and cylindrical coordinates are listed to three decimal places. Input and output angles are in degrees. Example code begins here. PROGRAM LATCYL_EX2 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR DOUBLE PRECISION RPD C C Local parameters. C INTEGER NREC PARAMETER ( NREC = 11 ) C C Local variables. C DOUBLE PRECISION CLON DOUBLE PRECISION LAT ( NREC ) DOUBLE PRECISION LON ( NREC ) DOUBLE PRECISION RADIUS ( NREC ) DOUBLE PRECISION R DOUBLE PRECISION RLAT DOUBLE PRECISION RLON DOUBLE PRECISION Z INTEGER I C C Define the input latitudinal coordinates. Angles in C degrees. C DATA RADIUS / 0.D0, 1.D0, 1.D0, . 1.D0, 1.4142D0, 1.D0, . 1.D0, 1.D0, 1.4142D0, . 1.D0, 0.D0 / DATA LON / 0.D0, 0.D0, 90.D0, . 0.D0, 180.D0, -90.D0, . 0.D0, 45.D0, 180.D0, . 180.D0, 33.D0 / DATA LAT / 90.D0, 0.D0, 0.D0, . 90.D0, 45.D0, 0.D0, . -90.D0, 0.D0, -45.D0, . 90.D0, 0.D0 / C C Print the banner. C WRITE(*,*) ' RADIUS LON LAT ' . // ' R CLON Z ' WRITE(*,*) ' ------- ------- ------- ' . // ' ------- ------- ------- ' C C Do the conversion. Output angles in degrees. C DO I = 1, NREC RLON = LON(I) * RPD() RLAT = LAT(I) * RPD() CALL LATCYL( RADIUS(I), RLON, RLAT, R, CLON, Z ) WRITE (*,'(6F9.3)') RADIUS(I), LON(I), LAT(I), . R, CLON * DPR(), Z END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: RADIUS LON LAT R CLON Z ------- ------- ------- ------- ------- ------- 0.000 0.000 90.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 90.000 0.000 1.000 90.000 0.000 1.000 0.000 90.000 0.000 0.000 1.000 1.414 180.000 45.000 1.000 180.000 1.000 1.000 -90.000 0.000 1.000 -90.000 0.000 1.000 0.000 -90.000 0.000 0.000 -1.000 1.000 45.000 0.000 1.000 45.000 0.000 1.414 180.000 -45.000 1.000 180.000 -1.000 1.000 180.000 90.000 0.000 180.000 1.000 0.000 33.000 0.000 0.000 33.000 0.000 3) Other than the obvious conversion between coordinate systems this routine could be used to obtain the axial projection from a sphere to a cylinder about the z-axis that contains the equator of the sphere. Such a projection is valuable because it preserves the areas between regions on the sphere and their projections to the cylinder. Example code begins here. PROGRAM LATCYL_EX3 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION DPR DOUBLE PRECISION RPD C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F23.11)' ) C C Local variables C DOUBLE PRECISION CLON DOUBLE PRECISION LAT DOUBLE PRECISION LON DOUBLE PRECISION RADIUS DOUBLE PRECISION R DOUBLE PRECISION Z C C Define the point whose projection is to be C computed. C RADIUS = 100.D0 LON = 45.D0 * RPD() LAT = -12.5D0 * RPD() C C Convert the latitudinal coordinates to cylindrical. C CALL LATCYL ( RADIUS, LON, LAT, R, CLON, Z ) WRITE(*,*) 'Coordinates of the projected point on ' . // 'cylinder:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km): ', R WRITE(*,FMT1) ' Longitude (deg): ', CLON*DPR() WRITE(*,FMT1) ' Z (km): ', Z END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Coordinates of the projected point on cylinder: Radius (km): 97.62960071199 Longitude (deg): 45.00000000000 Z (km): -21.64396139381 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionJ. Diaz del Rio (ODC Space) B.V. Semenov (JPL) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 06-JUL-2021 (JDR) Changed the argument names LONG and LONGC to LON and CLON for consistency with other routines. Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Removed unnecessary $Revisions section. Added complete code examples. SPICELIB Version 1.0.2, 26-JUL-2016 (BVS) Minor headers edits. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 31-JAN-1990 (WLT) |
Fri Dec 31 18:36:30 2021