Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_qxq

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries

Abstract


   CSPICE_QXQ multiplies two quaternions.

I/O


   Given:

      q1       a 4-vector representing a SPICE-style quaternion.

               [4,1] = size(q1); double = class(q1)

               See the discussion of 'Quaternion Styles' in the
               -Particulars section below.

               Note that multiple styles of quaternions are in use.
               This routine will not work properly if the input
               quaternions do not conform to the SPICE convention.

      q2       a second SPICE-style quaternion.

               [4,1] = size(q2); double = class(q2)

   the call:

      [qout] = cspice_qxq( q1, q2 )

   returns:

      qout     4-vector representing the quaternion product

                  q1 * q2

               Representing q(i) as the sums of scalar (real)
               part s(i) and vector (imaginary) part v(i)
               respectively,

                  q1 = s1 + v1
                  q2 = s2 + v2

               qout has scalar part s3 defined by

                  s3 = s1 * s2 - <v1, v2>

               and vector part v3 defined by

                  v3 = s1 * v2  +  s2 * v1  +  v1 x v2

               where the notation < , > denotes the inner
               product operator and x indicates the cross
               product operator.

               [4,1] = size(qout); double = class(qout)

Parameters


   None.

Examples


   Any numerical results shown for these examples may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Given the 'basis' quaternions:

         qid:  ( 1.0, 0.0, 0.0, 0.0 )
         qi :  ( 0.0, 1.0, 0.0, 0.0 )
         qj :  ( 0.0, 0.0, 1.0, 0.0 )
         qk :  ( 0.0, 0.0, 0.0, 1.0 )

      the following quaternion products give these results:

          Product       Expected result
         -----------   ----------------------
          qi  * qj     ( 0.0, 0.0, 0.0, 1.0 )
          qj  * qk     ( 0.0, 1.0, 0.0, 0.0 )
          qk  * qi     ( 0.0, 0.0, 1.0, 0.0 )
          qi  * qi     (-1.0, 0.0, 0.0, 0.0 )
          qj  * qj     (-1.0, 0.0, 0.0, 0.0 )
          qk  * qk     (-1.0, 0.0, 0.0, 0.0 )
          qid * qi     ( 0.0, 1.0, 0.0, 0.0 )
          qi  * qid    ( 0.0, 1.0, 0.0, 0.0 )
          qid * qj     ( 0.0, 0.0, 1.0, 0.0 )

      The following code example uses QXQ to produce these results.


      Example code begins here.


      function qxq_ex1()

         %
         % Let `qid', `qi', `qj', `qk' be the 'basis'
         % quaternions.
         %
         qid = [1.0,  0.0,  0.0,  0.0]';
         qi  = [0.0,  1.0,  0.0,  0.0]';
         qj  = [0.0,  0.0,  1.0,  0.0]';
         qk  = [0.0,  0.0,  0.0,  1.0]';

         %
         % Compute:
         %
         %    qi x qj = qk
         %    qj x qk = qi
         %    qk x qi = qj
         %
         [qout] = cspice_qxq( qi, qj );
         fprintf( 'qi x qj  = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '     qk  = %7.1f %7.1f %7.1f %7.1f\n', ...
                               qk(1), qk(2), qk(3), qk(4) )
         fprintf( ' \n' )

         [qout] = cspice_qxq( qj, qk );
         fprintf( 'qj x qk  = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '     qi  = %7.1f %7.1f %7.1f %7.1f\n', ...
                               qi(1), qi(2), qi(3), qi(4) )
         fprintf( ' \n' )

         [qout] = cspice_qxq( qk, qi );
         fprintf( 'qk x qi  = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '     qj  = %7.1f %7.1f %7.1f %7.1f\n', ...
                               qj(1), qj(2), qj(3), qj(4) )
         fprintf( ' \n' )

         %
         % Compute:
         %
         %    qi x qi  ==  -qid
         %    qj x qj  ==  -qid
         %    qk x qk  ==  -qid
         %
         [qout] = cspice_qxq( qi, qi );
         fprintf( 'qi x qi  = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '     qid = %7.1f %7.1f %7.1f %7.1f\n', ...
                           qid(1), qid(2), qid(3), qid(4) )
         fprintf( ' \n' )

         [qout] = cspice_qxq( qj, qj );
         fprintf( 'qj x qj  = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '     qid = %7.1f %7.1f %7.1f %7.1f\n', ...
                           qid(1), qid(2), qid(3), qid(4) )
         fprintf( ' \n' )

         [qout] = cspice_qxq( qk, qk );
         fprintf( 'qk x qk  = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '     qid = %7.1f %7.1f %7.1f %7.1f\n', ...
                           qid(1), qid(2), qid(3), qid(4) )
         fprintf( ' \n' )

         %
         % Compute:
         %
         %    qid x qi  = qi
         %    qi  x qid = qi
         %    qid x qj  = qj
         %
         [qout] = cspice_qxq( qid, qi );
         fprintf( 'qid x qi = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '      qi = %7.1f %7.1f %7.1f %7.1f\n', ...
                               qi(1), qi(2), qi(3), qi(4) )
         fprintf( ' \n' )

         [qout] = cspice_qxq( qi, qid );
         fprintf( 'qi x qid = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '      qi = %7.1f %7.1f %7.1f %7.1f\n', ...
                               qi(1), qi(2), qi(3), qi(4) )
         fprintf( ' \n' )

         [qout] = cspice_qxq( qid, qj );
         fprintf( 'qid x qj = %7.1f %7.1f %7.1f %7.1f\n', ...
                       qout(1), qout(2), qout(3), qout(4) )
         fprintf( '      qj = %7.1f %7.1f %7.1f %7.1f\n', ...
                               qj(1), qj(2), qj(3), qj(4) )
         fprintf( ' \n' )


      When this program was executed on a Mac/Intel/Octave5.x/64-bit
      platform, the output was:


      qi x qj  =     0.0     0.0     0.0     1.0
           qk  =     0.0     0.0     0.0     1.0

      qj x qk  =     0.0     1.0     0.0     0.0
           qi  =     0.0     1.0     0.0     0.0

      qk x qi  =     0.0     0.0     1.0     0.0
           qj  =     0.0     0.0     1.0     0.0

      qi x qi  =    -1.0     0.0     0.0     0.0
           qid =     1.0     0.0     0.0     0.0

      qj x qj  =    -1.0     0.0     0.0     0.0
           qid =     1.0     0.0     0.0     0.0

      qk x qk  =    -1.0     0.0     0.0     0.0
           qid =     1.0     0.0     0.0     0.0

      qid x qi =     0.0     1.0     0.0     0.0
            qi =     0.0     1.0     0.0     0.0

      qi x qid =     0.0     1.0     0.0     0.0
            qi =     0.0     1.0     0.0     0.0

      qid x qj =     0.0     0.0     1.0     0.0
            qj =     0.0     0.0     1.0     0.0


   2) Compute the composition of two rotation matrices by
      converting them to quaternions and computing their
      product, and by directly multiplying the matrices.

      Example code begins here.


      function qxq_ex2()

         %
         % Local variables
         %
         cmat1 = [ [1.0,  0.0,  0.0]', ...
                   [0.0, -1.0,  0.0]', ...
                   [0.0,  0.0, -1.0]'  ]';

         cmat2 = [ [0.0,  1.0,  0.0]', ...
                   [1.0,  0.0,  0.0]', ...
                   [0.0,  0.0, -1.0]'  ]';

         %
         % Convert the C-matrices to quaternions.
         %
         [q1] = cspice_m2q( cmat1 );
         [q2] = cspice_m2q( cmat2 );

         %
         % Find the product.
         %
         [qout] = cspice_qxq( q1, q2 );

         %
         % Convert the result to a C-matrix.
         %
         [cmout] = cspice_q2m( qout );

         fprintf( 'Using quaternion product:\n' )
         fprintf( '%9.4f %9.4f %9.4f\n',             ...
                  cmout(1,1), cmout(1,2), cmout(1,3) )
         fprintf( '%9.4f %9.4f %9.4f\n',             ...
                  cmout(2,1), cmout(2,2), cmout(2,3) )
         fprintf( '%9.4f %9.4f %9.4f\n',             ...
                  cmout(3,1), cmout(3,2), cmout(3,3) )

         %
         % Multiply `cmat1' and `cmat2' directly.
         %
         cmout = cmat1 * cmat2;

         fprintf( 'Using matrix product:\n' )
         fprintf( '%9.4f %9.4f %9.4f\n',             ...
                  cmout(1,1), cmout(1,2), cmout(1,3) )
         fprintf( '%9.4f %9.4f %9.4f\n',             ...
                  cmout(2,1), cmout(2,2), cmout(2,3) )
         fprintf( '%9.4f %9.4f %9.4f\n',             ...
                  cmout(3,1), cmout(3,2), cmout(3,3) )


      When this program was executed on a Mac/Intel/Octave5.x/64-bit
      platform, the output was:


      Using quaternion product:
         0.0000    1.0000    0.0000
        -1.0000    0.0000    0.0000
         0.0000    0.0000    1.0000
      Using matrix product:
         0.0000    1.0000    0.0000
        -1.0000    0.0000    0.0000
         0.0000    0.0000    1.0000


Particulars


   Quaternion Styles
   -----------------

   There are different "styles" of quaternions used in
   science and engineering applications. Quaternion styles
   are characterized by

   -  The order of quaternion elements

   -  The quaternion multiplication formula

   -  The convention for associating quaternions
      with rotation matrices

   Two of the commonly used styles are

      - "SPICE"

         > Invented by Sir William Rowan Hamilton
         > Frequently used in mathematics and physics textbooks

      - "Engineering"

         > Widely used in aerospace engineering applications


   Mice function interfaces ALWAYS use SPICE quaternions.
   Quaternions of any other style must be converted to SPICE
   quaternions before they are passed to Mice functions.


   Relationship between SPICE and Engineering Quaternions
   ------------------------------------------------------

   Let `m' be a rotation matrix such that for any vector `v',

      m*v

   is the result of rotating `v' by theta radians in the
   counterclockwise direction about unit rotation axis vector `a'.
   Then the SPICE quaternions representing `m' are

      (+/-) (  cos(theta/2),
               sin(theta/2) * a(1),
               sin(theta/2) * a(2),
               sin(theta/2) * a(3)  )

   while the engineering quaternions representing `m' are

      (+/-) ( -sin(theta/2) * a(1),
              -sin(theta/2) * a(2),
              -sin(theta/2) * a(3),
               cos(theta/2)         )

   For both styles of quaternions, if a quaternion `q' represents
   a rotation matrix `m', then -q represents `m' as well.

   Given an engineering quaternion

      qeng   = ( q1,  q2,  q3,  q4 )

   the equivalent SPICE quaternion is

      qspice = ( q4, -q1, -q2, -q3 )


   Associating SPICE Quaternions with Rotation Matrices
   ----------------------------------------------------

   Let `from' and `to' be two right-handed reference frames, for
   example, an inertial frame and a spacecraft-fixed frame. Let the
   symbols

      v    ,   v
       from     to

   denote, respectively, an arbitrary vector expressed relative to
   the `from' and `to' frames. Let `m' denote the transformation matrix
   that transforms vectors from frame `from' to frame `to'; then

      v   =  m * v
       to         from

   where the expression on the right hand side represents left
   multiplication of the vector by the matrix.

   Then if the unit-length SPICE quaternion `q' represents `m', where

      q = (q1, q2, q3, q4)

   the elements of `m' are derived from the elements of `q' as follows:

        .-                                                           -.
        |            2    2                                           |
        |  1 - 2*( q3 + q4 )   2*(q2*q3 - q1*q4)   2*(q2*q4 + q1*q3)  |
        |                                                             |
        |                                                             |
        |                                2    2                       |
    m = |  2*(q2*q3 + q1*q4)   1 - 2*( q2 + q4 )   2*(q3*q4 - q1*q2)  |
        |                                                             |
        |                                                             |
        |                                                    2    2   |
        |  2*(q2*q4 - q1*q3)   2*(q3*q4 + q1*q2)   1 - 2*( q2 + q3 )  |
        `-                                                           -'

   Note that substituting the elements of -q for those of `q' in the
   right hand side leaves each element of `m' unchanged; this shows
   that if a quaternion `q' represents a matrix `m', then so does the
   quaternion -q.

   To map the rotation matrix `m' to a unit quaternion, we start by
   decomposing the rotation matrix as a sum of symmetric
   and skew-symmetric parts:

                                        2
      m = [ I  +  (1-cos(theta)) * omega  ] + [ sin(theta) * omega ]

                       symmetric                 skew-symmetric


   `omega' is a skew-symmetric matrix of the form

                 .-               -.
                 |   0   -n3   n2  |
                 |                 |
       omega  =  |   n3   0   -n1  |
                 |                 |
                 |  -n2   n1   0   |
                 `-               -'

   The vector `n' of matrix entries (n1, n2, n3) is the rotation axis
   of `m' and `theta' is m's rotation angle. Note that `n' and `theta'
   are not unique.

   Let

      cth = cos(theta/2)
      sth = sin(theta/2)

   Then the unit quaternions `q' corresponding to `m' are

      q = +/- ( cth, sth*n1, sth*n2, sth*n3 )

   The mappings between quaternions and the corresponding rotations
   are carried out by the Mice routines

      cspice_q2m {quaternion to matrix}
      cspice_m2q {matrix to quaternion}

   cspice_m2q always returns a quaternion with scalar part greater than
   or equal to zero.


   SPICE Quaternion Multiplication Formula
   ---------------------------------------

   Given a SPICE quaternion

      q = ( q1, q2, q3, q4 )

   corresponding to rotation axis `a' and angle `theta' as above, we can
   represent `q' using 'scalar + vector' notation as follows:

      s =   q1           = cos(theta/2)

      v = ( q2, q3, q4 ) = sin(theta/2) * a

      q = s + v

   Let `quat1' and `quat2' be SPICE quaternions with respective scalar
   and vector parts `s1', `s2' and `v1', `v2':

      quat1 = s1 + v1
      quat2 = s2 + v2

   We represent the dot product of `v1' and `v2' by

      <v1, v2>

   and the cross product of `v1' and `v2' by

      v1 x v2

   Then the SPICE quaternion product is

      quat1*quat2 = s1*s2 - <v1,v2>  + s1*v2 + s2*v1 + (v1 x v2)

   If `quat1' and `quat2' represent the rotation matrices `m1' and `m2'
   respectively, then the quaternion product

      quat1*quat1

   represents the matrix product

      m1*m2

Exceptions


   1)  If any of the input arguments, `q1' or `q2', is undefined, an
       error is signaled by the Matlab error handling system.

   2)  If any of the input arguments, `q1' or `q2', is not of the
       expected type, or it does not have the expected dimensions and
       size, an error is signaled by the Mice interface.

Files


   None.

Restrictions


   None.

Required_Reading


   MICE.REQ
   ROTATION.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)

Version


   -Mice Version 1.0.0, 09-AUG-2021 (JDR)

Index_Entries


   quaternion times quaternion
   multiply quaternion by quaternion


Fri Dec 31 18:44:26 2021