Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_latrec

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries

Abstract


   CSPICE_LATREC converts latitudinal coordinates to rectangular
   (Cartesian) coordinates.

I/O


   Given:

      radius   the value(s) describing the distance of the position
               from the origin.

               [1,n] = size(radius); double = class(radius)

      lon      the value(s) describing the angle of the position from
               the XZ plane measured in radians.

               [1,n] = size(lon); double = class(lon)

      lat      the value(s) describing the angle of the position from the
               XY plane measured in radians.

               [1,n] = size(lat); double = class(lat)

   the call:

      [rectan] = cspice_latrec( radius, lon, lat )

   returns:

      rectan   the array(s) containing the rectangular coordinates of the
               position or set of positions

               [3,n] = size(rectan); double = class(rectan)

               `rectan' returns with the same units associated with `radius'.

               `rectan' returns with the vectorization measure, N, as
               `radius', `lon', and `lat'.

Parameters


   None.

Examples


   Any numerical results shown for these examples may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Compute the latitudinal coordinates of the position of the Moon
      as seen from the Earth, and convert them to rectangular
      coordinates.

      Use the meta-kernel shown below to load the required SPICE
      kernels.


         KPL/MK

         File name: latrec_ex1.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            naif0012.tls                  Leapseconds


         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'naif0012.tls'  )

         \begintext

         End of meta-kernel


      Example code begins here.


      function latrec_ex1()

         %
         % Load an SPK and leapseconds kernels.
         %
         cspice_furnsh( 'latrec_ex1.tm' )

         %
         % Convert the time to ET.
         %
         et = cspice_str2et( '2017 Mar 20' );

         %
         % Retrieve the position of the moon seen from earth at 'et'
         % in the J2000 frame without aberration correction.
         %
         [pos, et] = cspice_spkpos( 'MOON', et, 'J2000', 'NONE', 'EARTH' );

         fprintf( 'Original rectangular coordinates:\n' )
         fprintf( '   X          (km): %20.8f\n', pos(1) )
         fprintf( '   Y          (km): %20.8f\n', pos(2) )
         fprintf( '   Z          (km): %20.8f\n', pos(3) )

         %
         % Convert the position vector 'pos' to latitudinal
         % coordinates.
         %
         [radius, lon, lat] = cspice_reclat(pos);
         fprintf( '\n' )
         fprintf( 'Latitudinal coordinates:\n' )
         fprintf( '   Radius     (km): %20.8f\n', radius )
         fprintf( '   Longitude (deg): %20.8f\n', lon * cspice_dpr )
         fprintf( '   Latitude  (deg): %20.8f\n', lat * cspice_dpr )

         %
         % Convert the latitudinal to rectangular.
         %
         [rectan] = cspice_latrec( radius, lon, lat);
         fprintf( '\n' )
         fprintf( 'Rectangular coordinates from cspice_latrec:\n' )
         fprintf( '   X          (km): %20.8f\n', rectan(1) )
         fprintf( '   Y          (km): %20.8f\n', rectan(2) )
         fprintf( '   Z          (km): %20.8f\n', rectan(3) )

         %
         % It's always good form to unload kernels after use,
         % particularly in MATLAB due to data persistence.
         %
         cspice_kclear


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


      Original rectangular coordinates:
         X          (km):      -55658.44323296
         Y          (km):     -379226.32931475
         Z          (km):     -126505.93063865

      Latitudinal coordinates:
         Radius     (km):      403626.33912495
         Longitude (deg):         -98.34959789
         Latitude  (deg):         -18.26566077

      Rectangular coordinates from cspice_latrec:
         X          (km):      -55658.44323296
         Y          (km):     -379226.32931475
         Z          (km):     -126505.93063865


   2) Create a table showing a variety of latitudinal coordinates
      and the corresponding rectangular coordinates.

      Corresponding latitudinal and rectangular coordinates are
      listed to four decimal places. Input angles are in degrees.


      Example code begins here.


      function latrec_ex2()

         %
         % Define eleven sets of latitudinal coordinates.
         %
         r         = [ 0., 1., 1., 1., 1., 1., 1., ...
                       sqrt(2), sqrt(2), sqrt(2), sqrt(3) ];
         longitude = [ 0., 0., 90., 0. 180., -90., ...
                       0., 45., 0., 90., 45. ];
         latitude  = [ 0., 0., 0., 90., 0., 0.,    ...
                       -90., 0., 45., 45., 35.2643 ];

         %
         % ...convert the latitudinal coordinates to rectangular coordinates
         %
         longitude = longitude * cspice_rpd;
         latitude  = latitude  * cspice_rpd;

         rectan = cspice_latrec(r, longitude, latitude);

         %
         % Loop over each set of coordinates for output, convert `longitude'
         % and `latitude' to degrees...
         %
         longitude = longitude * cspice_dpr;
         latitude  = latitude  * cspice_dpr;

         %
         % Create an array of values for output.
         %
         output = [ r; longitude; latitude; rectan ];

         %
         % Output banner.
         %
         disp('     r        lon       lat     rect(1)   rect(2)   rect(3)')
         disp('  -------  --------  --------   -------   -------   -------')

         txt = sprintf( '%9.3f %9.3f %9.3f %9.3f %9.3f %9.3f\n', output );
         disp( txt )


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


           r        lon       lat     rect(1)   rect(2)   rect(3)
        -------  --------  --------   -------   -------   -------
          0.000     0.000     0.000     0.000     0.000     0.000
          1.000     0.000     0.000     1.000     0.000     0.000
          1.000    90.000     0.000     0.000     1.000     0.000
          1.000     0.000    90.000     0.000     0.000     1.000
          1.000   180.000     0.000    -1.000     0.000     0.000
          1.000   -90.000     0.000     0.000    -1.000     0.000
          1.000     0.000   -90.000     0.000     0.000    -1.000
          1.414    45.000     0.000     1.000     1.000     0.000
          1.414     0.000    45.000     1.000     0.000     1.000
          1.414    90.000    45.000     0.000     1.000     1.000
          1.732    45.000    35.264     1.000     1.000     1.000


Particulars


   This routine returns the rectangular coordinates of a point
   whose position is input in latitudinal coordinates.

   Latitudinal coordinates are defined by a distance from a central
   reference point, an angle from a reference meridian, and an angle
   above the equator of a sphere centered at the central reference
   point.

Exceptions


   1)  If any of the input arguments, `radius', `lon' or `lat', is
       undefined, an error is signaled by the Matlab error handling
       system.

   2)  If any of the input arguments, `radius', `lon' or `lat', is
       not of the expected type, or it does not have the expected
       dimensions and size, an error is signaled by the Mice
       interface.

   3)  If the input vectorizable arguments `radius', `lon' and `lat'
       do not have the same measure of vectorization (N), an error is
       signaled by the Mice interface.

Files


   None.

Restrictions


   None.

Required_Reading


   MICE.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)

Version


   -Mice Version 1.1.0, 24-AUG-2021 (EDW) (JDR)

       Changed input argument names "longitude" and "latitude" to "lon" and
       "lat".

       Edited the header to comply with NAIF standard. Added
       meta-kernel to example #1. Updated code example #1 to produce
       formatted output and added a call to cspice_kclear. Added the
       problem statement to both examples.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections, and
       completed -Particulars section.

       Eliminated use of "lasterror" in rethrow.

       Removed reference to the function's corresponding CSPICE header from
       -Required_Reading section.

   -Mice Version 1.0.1, 01-DEC-2014 (EDW)

       Edited -I/O section to conform to NAIF standard for Mice
       documentation.

   -Mice Version 1.0.0, 22-NOV-2005 (EDW)

Index_Entries


   latitudinal to rectangular coordinates


Fri Dec 31 18:44:25 2021