Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_gfdist

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries

Abstract


   CSPICE_GFDIST determines the time intervals over which a specified
   constraint on observer-target distance is met.

I/O


   Given:

      target   name of the target body.

               [1,c1] = size(target); char = class(target)

                  or

               [1,1] = size(target); cell = class(target)

               Optionally, you may supply the integer ID code for the object
               as an integer string. For example both 'MOON' and '301' are
               legitimate strings that indicate the Moon is the target body.

               Case and leading or trailing blanks are not significant
               in the string `target'.

      abcorr   describes the aberration corrections to apply to the state
               evaluations to account for one-way light time and stellar
               aberration.

               [1,c2] = size(abcorr); char = class(abcorr)

                  or

               [1,1] = size(abcorr); cell = class(abcorr)

               This routine accepts only reception mode aberration
               corrections. See the header of cspice_spkezr for a detailed
               description of the aberration correction options.
               For convenience, the allowed aberration options are
               listed below:

                  'NONE'     Apply no correction.

                  'LT'       "Reception" case: correct for
                             one-way light time using a Newtonian
                             formulation.

                  'LT+S'     "Reception" case: correct for
                             one-way light time and stellar
                             aberration using a Newtonian
                             formulation.

                  'CN'       "Reception" case: converged
                             Newtonian light time correction.

                  'CN+S'     "Reception" case: converged
                             Newtonian light time and stellar
                             aberration corrections.

                  'XLT'      "Transmission" case: correct for
                             one-way light time using a Newtonian
                             formulation.

                  'XLT+S'    "Transmission" case: correct for
                             one-way light time and stellar
                             aberration using a Newtonian
                             formulation.

                  'XCN'      "Transmission" case: converged
                             Newtonian light time correction.

                  'XCN+S'    "Transmission" case: converged
                             Newtonian light time and stellar
                             aberration corrections.

               Case and leading or trailing blanks are not significant
               in the string `abcorr'.

      obsrvr   name of the observing body.

               [1,c3] = size(obsrvr); char = class(obsrvr)

                  or

               [1,1] = size(obsrvr); cell = class(obsrvr)

               Optionally, you may supply the ID code of the object as an
               integer string. For example both "MOON" and "301" are
               legitimate strings that indicate the Moon is the observer.

               Case and leading or trailing blanks are not significant
               in the string `obsrvr'.

      relate   the constraint relational operator on observer-target
               distance.

               [1,c4] = size(relate); char = class(relate)

                  or

               [1,1] = size(relate); cell = class(relate)

               The result window found  by this routine indicates the time
               intervals where the constraint is satisfied.

               Supported values of `relate' and corresponding meanings are
               shown below:

                  '>'       Distance is greater than the reference
                            value `refval'.

                  '='       Distance is equal to the reference
                            value `refval'.

                  '<'       Distance is less than the reference
                            value `refval'.

                  'ABSMAX'  Distance is at an absolute maximum.

                  'ABSMIN'  Distance is at an absolute minimum.

                  'LOCMAX'  Distance is at a local maximum.

                  'LOCMIN'  Distance is at a local minimum.

               The caller may indicate that the region of interest
               is the set of time intervals where the quantity is
               within a specified measure of an absolute extremum.
               The argument `adjust' (described below) is used to
               specify this measure.

               Local extrema are considered to exist only in the
               interiors of the intervals comprising the confinement
               window:  a local extremum cannot exist at a boundary
               point of the confinement window.

               Case and leading or trailing blanks are not significant
               in the string `relate'.

      refval   reference value used together with `relate' argument to define
               an equality or inequality to satisfy by the observer-target
               distance.

               [1,1] = size(refval); double = class(refval)

               See the discussion of `relate' above for further information.

               The units of `refval' are km.

      adjust   value used to modify searches for absolute extrema.

               [1,1] = size(adjust); double = class(adjust)

               When `relate' is set to 'ABSMAX' or 'ABSMIN' and `adjust' is
               set to a positive value, cspice_gfdist finds times when the
               observer-target vector coordinate is within `adjust' radians
               of the specified extreme value.

               For `relate' set to 'ABSMAX', the result window contains
               time intervals when the observer-target vector coordinate has
               values between ABSMAX - adjust and ABSMAX.

               For `relate' set to 'ABSMIN', the result window contains
               time intervals when the phase angle has values between
               ABSMIN and ABSMIN + adjust.

               `adjust' is not used for searches for local extrema,
               equality or inequality conditions.

      step     time step size to use in the search.

               [1,1] = size(step); double = class(step)

               `step' must be short enough for a search using this step size
               to locate the time intervals where coordinate function of the
               observer-target vector is monotone increasing or decreasing.
               However, `step' must not be *too* short, or the search will
               take an unreasonable amount of time.

               The choice of `step' affects the completeness but not
               the precision of solutions found by this routine; the
               precision is controlled by the convergence tolerance.

               `step' has units of seconds.

      nintvls  value specifying the number of intervals in the internal
               workspace array used by this routine.

               [1,1] = size(nintvls); int32 = class(nintvls)

               `nintvls' should be at least as large as the number of
               intervals within the search region on which the specified
               observer-target vector coordinate function is monotone
               increasing or decreasing. It does no harm to pick a value
               of `nintvls' larger than the minimum required to execute
               the specified search, but if chosen too small, the
               search will fail.

      cnfine   a SPICE window that confines the time period over which the
               specified search is conducted.

               [2m,1] = size(cnfine); double = class(cnfine)

               `cnfine' may consist of a single interval or a collection of
               intervals.

               In some cases the confinement window can be used to
               greatly reduce the time period that must be searched
               for the desired solution. See the -Particulars section
               below for further discussion.

               See the -Examples section below for a code example
               that shows how to create a confinement window.

               In some cases the observer's state may be computed at
               times outside of `cnfine' by as much as 2 seconds. See
               -Particulars for details.

   the call:

      [result] = cspice_gfdist( target, abcorr, obsrvr,  relate, refval,  ...
                                adjust, step,   nintvls, cnfine)

   returns:

      result   the SPICE window of intervals, contained within the
               confinement window `cnfine', on which the specified
               constraint is satisfied.

               [2n,1] = size(result); double = class(result)

               If the search is for local extrema, or for absolute
               extrema with `adjust' set to zero, then normally each
               interval of `result' will be a singleton: the left and
               right endpoints of each interval will be identical.

               If no times within the confinement window satisfy the
               constraint, `result' will return with cardinality zero.

Parameters


   All parameters described here are declared in the header file
   MiceGF.m. See that file for parameter values.

   SPICE_GF_CNVTOL

               is the convergence tolerance used for finding endpoints of
               the intervals comprising the result window.
               SPICE_GF_CNVTOL is used to determine when binary searches
               for roots should terminate: when a root is bracketed
               within an interval of length SPICE_GF_CNVTOL, the root is
               considered to have been found.

               The accuracy, as opposed to precision, of roots found
               by this routine depends on the accuracy of the input
               data. In most cases, the accuracy of solutions will be
               inferior to their precision.

Examples


   Any numerical results shown for this example may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Find times during the first three months of the year 2007
      when the Earth-Moon distance is greater than 400000 km.
      Display the start and stop times of the time intervals
      over which this constraint is met, along with the Earth-Moon
      distance at each interval endpoint.

      We expect the Earth-Moon distance to be an oscillatory function
      with extrema roughly two weeks apart. Using a step size of one
      day will guarantee that the GF system will find all distance
      extrema. (Recall that a search for distance extrema is an
      intermediate step in the GF search process.)

      Use the meta-kernel shown below to load the required SPICE
      kernels.


         KPL/MK

         File name: gfdist_ex1.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            pck00008.tpc                  Planet orientation and
                                          radii
            naif0009.tls                  Leapseconds


         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'pck00008.tpc',
                                'naif0009.tls'  )

         \begintext

         End of meta-kernel


      Example code begins here.


      function gfdist_ex1()

         MAXWIN  =  1000;
         TIMFMT  = 'YYYY-MON-DD HR:MN:SC.###### (TDB) ::TDB ::RND';

         %
         % Load kernels.
         %
         cspice_furnsh( 'gfdist_ex1.tm' );

         %
         % Store the time bounds of our search interval in
         % the cnfine confinement window.
         %
         et = cspice_str2et( { '2007 JAN 01', '2007 APR 01'} );

         cnfine = cspice_wninsd( et(1), et(2) );

         %
         % Search using a step size of 1 day (in units of
         % seconds).  The reference value is 400000 km.
         % We're not using the adjustment feature, so
         % we set `adjust' to zero.
         %
         target  = 'MOON';
         abcorr  = 'NONE';
         obsrvr  = 'EARTH';
         relate  = '>';
         refval  = 4.e5;
         adjust  = 0.;
         step    = 1.*cspice_spd;
         nintvls = MAXWIN;

         result = cspice_gfdist( target, abcorr, obsrvr,  relate, refval, ...
                                 adjust, step,   nintvls, cnfine );

         %
         % List the beginning and ending times in each interval
         % if result contains data.
         %
         for i=1:numel(result)/2

            [left, right] = cspice_wnfetd( result, i );

            output = cspice_timout( [left,right], TIMFMT );

            if( isequal( left, right) )

               disp( ['Event time: ' output(1,:)] )

            else

               disp( ['From : ' output(1,:)] )
               disp( ['To   : ' output(2,:)] )
               disp( ' ')

            end

         end

         %
         % It's always good form to unload kernels after use,
         % particularly in Matlab due to data persistence.
         %
         cspice_kclear


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


      From : 2007-JAN-08 00:11:07.623827 (TDB)
      To   : 2007-JAN-13 06:37:47.954706 (TDB)

      From : 2007-FEB-04 07:02:35.279110 (TDB)
      To   : 2007-FEB-10 09:31:01.844110 (TDB)

      From : 2007-MAR-03 00:20:25.183641 (TDB)
      To   : 2007-MAR-10 14:04:38.497606 (TDB)

      From : 2007-MAR-29 22:53:58.147001 (TDB)
      To   : 2007-APR-01 00:01:05.185655 (TDB)


Particulars


   This routine determines a set of one or more time intervals
   within the confinement window when the distance between the
   specified target and observer satisfies a caller-specified
   constraint. The resulting set of intervals is returned as a SPICE
   window.

   Below we discuss in greater detail aspects of this routine's
   solution process that are relevant to correct and efficient
   use of this routine in user applications.


   The Search Process
   ==================

   Regardless of the type of constraint selected by the caller, this
   routine starts the search for solutions by determining the time
   periods, within the confinement window, over which the
   distance function is monotone increasing and monotone
   decreasing. Each of these time periods is represented by a SPICE
   window. Having found these windows, all of the range rate
   function's local extrema within the confinement window are known.
   Absolute extrema then can be found very easily.

   Within any interval of these "monotone" windows, there will be at
   most one solution of any equality constraint. Since the boundary
   of the solution set for any inequality constraint is contained in
   the union of

   -  the set of points where an equality constraint is met

   -  the boundary points of the confinement window

   the solutions of both equality and inequality constraints can be
   found easily once the monotone windows have been found.


   Step Size
   =========

   The monotone windows (described above) are found via a two-step
   search process. Each interval of the confinement window is
   searched as follows: first, the input step size is the time
   separation at which the sign of the rate of change of distance
   ("range rate") is sampled. Starting at the left endpoint of the
   interval, samples will be taken at each step. If a change of sign
   is found, a root has been bracketed; at that point, the time at
   which the range rate is zero can be found by a refinement
   process, for example, via binary search.

   Note that the optimal choice of step size depends on the lengths
   of the intervals over which the distance function is monotone:
   the step size should be shorter than the shortest of these
   intervals (within the confinement window).

   The optimal step size is *not* necessarily related to the lengths
   of the intervals comprising the result window. For example, if
   the shortest monotone interval has length 10 days, and if the
   shortest result window interval has length 5 minutes, a step size
   of 9.9 days is still adequate to find all of the intervals in the
   result window. In situations like this, the technique of using
   monotone windows yields a dramatic efficiency improvement over a
   state-based search that simply tests at each step whether the
   specified constraint is satisfied. The latter type of search can
   miss solution intervals if the step size is longer than the
   shortest solution interval.

   Having some knowledge of the relative geometry of the target and
   observer can be a valuable aid in picking a reasonable step size.
   In general, the user can compensate for lack of such knowledge by
   picking a very short step size; the cost is increased computation
   time.

   Note that the step size is not related to the precision with which
   the endpoints of the intervals of the result window are computed.
   That precision level is controlled by the convergence tolerance.


   Convergence Tolerance
   =====================

   As described above, the root-finding process used by this routine
   involves first bracketing roots and then using a search process
   to locate them. "Roots" include times when extrema are attained
   and times when the distance function is equal to a reference
   value or adjusted extremum. All endpoints of the intervals
   comprising the result window are either endpoints of intervals of
   the confinement window or roots.

   Once a root has been bracketed, a refinement process is used to
   narrow down the time interval within which the root must lie.
   This refinement process terminates when the location of the root
   has been determined to within an error margin called the
   "convergence tolerance." The default convergence tolerance
   used by this routine is set by the parameter SPICE_GF_CNVTOL (defined
   in MiceGF.m).

   The value of SPICE_GF_CNVTOL is set to a "tight" value so that the
   tolerance doesn't become the limiting factor in the accuracy of
   solutions found by this routine. In general the accuracy of input
   data will be the limiting factor.

   The user may change the convergence tolerance from the default
   SPICE_GF_CNVTOL value by calling the routine cspice_gfstol, e.g.

      cspice_gfstol( tolerance value );

   Call cspice_gfstol prior to calling this routine. All subsequent
   searches will use the updated tolerance value.

   Setting the tolerance tighter than SPICE_GF_CNVTOL is unlikely to be
   useful, since the results are unlikely to be more accurate.
   Making the tolerance looser will speed up searches somewhat,
   since a few convergence steps will be omitted. However, in most
   cases, the step size is likely to have a much greater effect
   on processing time than would the convergence tolerance.


   The Confinement Window
   ======================

   The simplest use of the confinement window is to specify a time
   interval within which a solution is sought. However, the
   confinement window can, in some cases, be used to make searches
   more efficient. Sometimes it's possible to do an efficient search
   to reduce the size of the time period over which a relatively
   slow search of interest must be performed. See the "CASCADE"
   example program in gf.req for a demonstration.

   Certain types of searches require the state of the observer,
   relative to the solar system barycenter, to be computed at times
   slightly outside the confinement window `cnfine'. The time window
   that is actually used is the result of "expanding" `cnfine' by a
   specified amount "T": each time interval of `cnfine' is expanded by
   shifting the interval's left endpoint to the left and the right
   endpoint to the right by T seconds. Any overlapping intervals are
   merged. (The input argument `cnfine' is not modified.)

   The window expansions listed below are additive: if both
   conditions apply, the window expansion amount is the sum of the
   individual amounts.

   -  If a search uses an equality constraint, the time window
      over which the state of the observer is computed is expanded
      by 1 second at both ends of all of the time intervals
      comprising the window over which the search is conducted.

   -  If a search uses stellar aberration corrections, the time
      window over which the state of the observer is computed is
      expanded as described above.

   When light time corrections are used, expansion of the search
   window also affects the set of times at which the light time-
   corrected state of the target is computed.

   In addition to the possible 2 second expansion of the search
   window that occurs when both an equality constraint and stellar
   aberration corrections are used, round-off error should be taken
   into account when the need for data availability is analyzed.

Exceptions


   1)  In order for this routine to produce correct results,
       the step size must be appropriate for the problem at hand.
       Step sizes that are too large may cause this routine to miss
       roots; step sizes that are too small may cause this routine
       to run unacceptably slowly and in some cases, find spurious
       roots.

       This routine does not diagnose invalid step sizes, except that
       if the step size is non-positive, an error is signaled by a
       routine in the call tree of this routine.

   2)  Due to numerical errors, in particular,

          - Truncation error in time values
          - Finite tolerance value
          - Errors in computed geometric quantities

       it is *normal* for the condition of interest to not always be
       satisfied near the endpoints of the intervals comprising the
       result window.

       The result window may need to be contracted slightly by the
       caller to achieve desired results. The SPICE window routine
       cspice_wncond can be used to contract the result window.

   3)  If an error (typically cell overflow) occurs while performing
       window arithmetic, the error is signaled by a routine
       in the call tree of this routine.

   4)  If the relational operator `relate' is not recognized, an
       error is signaled by a routine in the call tree of this
       routine.

   5)  If the aberration correction specifier contains an
       unrecognized value, an error is signaled by a routine in the
       call tree of this routine.

   6)  If `adjust' is negative, an error is signaled by a routine in
       the call tree of this routine.

   7)  If either of the input body names do not map to NAIF ID
       codes, an error is signaled by a routine in the call tree of
       this routine.

   8)  If required ephemerides or other kernel data are not
       available, an error is signaled by a routine in the call tree
       of this routine.

   9)  If the output SPICE window `result' has insufficient capacity
       to contain the number of intervals on which the specified
       distance condition is met, an error is signaled
       by a routine in the call tree of this routine.

   10) If any of the input arguments, `target', `abcorr', `obsrvr',
       `relate', `refval', `adjust', `step', `nintvls' or `cnfine',
       is undefined, an error is signaled by the Matlab error
       handling system.

   11) If any of the input arguments, `target', `abcorr', `obsrvr',
       `relate', `refval', `adjust', `step', `nintvls' or `cnfine',
       is not of the expected type, or it does not have the expected
       dimensions and size, an error is signaled by the Mice
       interface.

Files


   Appropriate kernels must be loaded by the calling program before
   this routine is called.

   The following data are required:

   -  SPK data: ephemeris data for target and observer for the
      time period defined by the confinement window must be
      loaded. If aberration corrections are used, the states of
      target and observer relative to the solar system barycenter
      must be calculable from the available ephemeris data.
      Typically ephemeris data are made available by loading one
      or more SPK files via cspice_furnsh.

   -  If non-inertial reference frames are used, then PCK
      files, frame kernels, C-kernels, and SCLK kernels may be
      needed.

   -  In some cases the observer's state may be computed at times
      outside of `cnfine' by as much as 2 seconds; data required to
      compute this state must be provided by loaded kernels. See
      -Particulars for details.

   Kernel data are normally loaded once per program run, NOT every
   time this routine is called.

Restrictions


   1)  The kernel files to be used by this routine must be loaded
       (normally via the Mice routine cspice_furnsh) before this routine
       is called.

Required_Reading


   MICE.REQ
   GF.REQ
   SPK.REQ
   CK.REQ
   TIME.REQ
   WINDOWS.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)

Version


   -Mice Version 1.1.0, 03-NOV-2021 (EDW) (JDR)

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections, and
       edited -I/O section to comply with NAIF standard. Corrected
       description of "relate" input argument.

       Updated header to describe use of expanded confinement window.

       Edited the header to comply with NAIF standard. Added
       meta-kernel used in the example.

       Eliminated use of "lasterror" in rethrow.

       Removed reference to the function's corresponding CSPICE header from
       -Required_Reading section.

   -Mice Version 1.0.2, 11-NOV-2014 (EDW)

       Edited -I/O section to conform to NAIF standard for Mice
       documentation.

   -Mice Version 1.0.1, 05-SEP-2012 (EDW)

       Edit to comments to correct search description.

       Header updated to describe use of cspice_gfstol.

   -Mice Version 1.0.0, 15-APR-2009 (EDW)

Index_Entries


   GF distance search


Fri Dec 31 18:44:24 2021