Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_dskcls

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries

Abstract


   CSPICE_DSKCLS closes a DSK file opened for read or write.

I/O


   Given:

      handle   the file handle for an open DSK file.

               [1,1] = size(handle); int32 = class(handle)

      optmiz   is a logical flag indicating whether the DSK
               should be segregated before it is closed. This
               option applies only to files open for write
               access. The value of `optmiz' has no effect for
               files opened for read access.

               [1,1] = size(optmiz); logical = class(optmiz)

   the call:

      cspice_dskcls( handle, optmiz )

   returns:

   The routine closes the file indicated by 'handle'. The close operation
   tests the file to ensure the presence of data segments.

Parameters


   None.

Examples


   Any numerical results shown for this example may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Create a three-segment DSK file using plate model data for
      Phobos. Use latitudinal, rectangular, and planetodetic
      coordinates in the respective segments. This is not a
      realistic example, but it serves to demonstrate use of
      the supported coordinate systems.

      Use the DSK kernel below to provide, for simplicity, the input
      plate and vertex data. This file has one segment only.

         phobos_3_3.bds


      Example code begins here.


      function dskcls_ex1()

         %
         % MiceUser globally defines DSK parameters.
         % For more information, please see MiceDSK.m.
         %
         MiceUser

         NSEG = 3;

         cornam = { 'radius', 'Z-coordinate', 'Z-coordinate', 'altitude'};

         %
         % Assign names of input and output DSK files.
         %
         indsk = 'phobos_3_3.bds';
         dsk   = 'phobos_3_3_3seg.bds';

         if ( exist( dsk, 'file' ) == 2 )
            delete( dsk )
         end


         %
         % Open input DSK for read access; find first segment.
         %
         inhan           = cspice_dasopr( indsk );
         [dladsc, found] = cspice_dlabfs( inhan );


         %
         % Fetch vertices and plates from input DSK file.
         %
         % Note that vertex and plate indices are 1-based.
         %
         disp( 'Reading input data...' )

         vrtces = cspice_dskv02( inhan, dladsc, 1, SPICE_DSK02_MAXVRT );
         plates = cspice_dskp02( inhan, dladsc, 1, SPICE_DSK02_MAXPLT );

         disp( 'Done.' )


         %
         % Set input array sizes required by cspice_dskmi2.
         %
         voxpsz = SPICE_DSK02_MAXVXP;
         voxlsz = SPICE_DSK02_MXNVLS;
         worksz = SPICE_DSK02_MAXCEL;
         spaisz = SPICE_DSK02_SPAISZ;
         makvtl = true;

         %
         % Set fine and coarse voxel scales. (These usually
         % need to determined by experimentation.)
         %
         finscl = 5.0;
         corscl = 4;

         %
         % Open a new DSK file.
         %
         handle = cspice_dskopn( dsk, dsk, 0 );

         for segno=1:NSEG

            %
            % Create spatial index. We won't generate a
            % vertex-plate mapping, so we set the flag
            % for creating this map to "false."
            %
            fprintf( 'Creating segment %d\n', segno )
            fprintf( 'Creating spatial index...\n' )

            [spaixd, spaixi] = cspice_dskmi2( vrtces, plates, finscl, ...
                                              corscl, worksz, voxpsz, ...
                                              voxlsz, makvtl,         ...
                                              spaisz );

            fprintf( 'Done.\n')

            %
            % Set up inputs describing segment attributes:
            %
            % - Central body: Phobos
            % - Surface ID code: user's choice.
            %   We use the segment number here.
            % - Data class: general (arbitrary) shape
            % - Body-fixed reference frame
            % - Time coverage bounds (TBD)
            %
            center = 401;
            surfid = segno;
            dclass = SPICE_DSK_GENCLS;
            frame  = 'IAU_PHOBOS';

            first = -50. * cspice_jyear();
            last  =  50. * cspice_jyear();

            %
            % Set the coordinate system and coordinate system
            % bounds based on the segment index.
            %
            % Zero out the coordinate parameters to start.
            %
            corpar = zeros(SPICE_DSK_NSYPAR,1);

            switch segno

               case 1

                  %
                  % Use planetocentric latitudinal coordinates. Set
                  % the longitude and latitude bounds.
                  %
                  corsys = SPICE_DSK_LATSYS;

                  mncor1 = -cspice_pi();
                  mxcor1 =  cspice_pi();
                  mncor2 = -cspice_halfpi();
                  mxcor2 =  cspice_halfpi();

               case 2

                  %
                  % Use rectangular coordinates. Set the
                  % X and Y bounds.
                  %
                  % The bounds shown here were derived from
                  % the plate data. They lie slightly outside
                  % of the range spanned by the plates.
                  %
                  corsys = SPICE_DSK_RECSYS;

                  mncor1 = -1.3;
                  mxcor1 =  1.31;
                  mncor2 = -1.21;
                  mxcor2 =  1.2;

               case 3

                  %
                  % Set the coordinate system to planetodetic.
                  %
                  corsys    = SPICE_DSK_PDTSYS;

                  mncor1    = -cspice_pi();
                  mxcor1    =  cspice_pi();
                  mncor2    = -cspice_halfpi();
                  mxcor2    =  cspice_halfpi();

                  %
                  % We'll use equatorial and polar radii from
                  % pck00010.tpc. These normally would be fetched
                  % at run time, but for simplicity, we'll use
                  % hard-coded values.
                  %
                  re        = 13.0;
                  rp        =  9.1;
                  f         = ( re - rp ) / re;

                  corpar = [ re, f ]';

               otherwise

                  error( 'Mice(BUG)' )

            end

            %
            % Compute plate model radius bounds.
            %
            fprintf( 'Computing %s bounds of plate set...\n', ...
                                            char(cornam(corsys)) )

            [mncor3, mxcor3] = cspice_dskrb2( vrtces, plates, ...
                                              corsys, corpar );

            fprintf ( 'Done.\n' )

            %
            % Write the segment to the file.
            %
            fprintf( 'Writing segment...\n' )

            cspice_dskw02( handle, center, surfid, dclass, frame,   ...
                           corsys, corpar, mncor1, mxcor1, mncor2,  ...
                           mxcor2, mncor3, mxcor3, first,  last,    ...
                           vrtces, plates, spaixd, spaixi        )

         end

         %
         % Close the input DSK.
         %
         cspice_dascls( inhan )
         cspice_dskcls( handle, true )


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


      Reading input data...
      Done.
      Creating segment 1
      Creating spatial index...
      Done.
      Computing radius bounds of plate set...
      Done.
      Writing segment...
      Creating segment 2
      Creating spatial index...
      Done.
      Computing Z-coordinate bounds of plate set...
      Done.
      Writing segment...
      Creating segment 3
      Creating spatial index...
      Done.
      Computing altitude bounds of plate set...
      Done.
      Writing segment...


      Note that after run completion, a new DSK exists in the output
      directory.

Particulars


   A cspice_dskcls call should balance every cspice_dskopn
   call.

Exceptions


   1)  If an error occurs when the file is closed, the error is
       signaled by a routine in the call tree of this routine.

   2)  If any of the input arguments, `handle' or `optmiz', is
       undefined, an error is signaled by the Matlab error handling
       system.

   3)  If any of the input arguments, `handle' or `optmiz', is not of
       the expected type, or it does not have the expected dimensions
       and size, an error is signaled by the Mice interface.

Files


   See argument `handle'.

Restrictions


   1)  This routine should not be called by user applications that have
       loaded a DSK file via cspice_furnsh. Such applications should call
       the KEEPER routines cspice_unload or cspice_kclear instead.

Required_Reading


   MICE.REQ
   DAS.REQ
   DSK.REQ

Literature_References


   None.

Author_and_Institution


   N.J. Bachman        (JPL)
   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)

Version


   -Mice Version 1.1.0, 10-AUG-2021 (EDW) (JDR)

       Changed input argument name "optimz" to "optmiz".

       Edited the -Examples section to comply with NAIF standard.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections.

       Eliminated use of "lasterror" in rethrow.

       Removed reference to the function's corresponding CSPICE header from
       -Required_Reading section.

   -Mice Version 1.0.0, 02-FEB-2016 (EDW) (NJB)

Index_Entries


   close a DSK file


Fri Dec 31 18:44:24 2021