Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_drdgeo

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries

Abstract


   CSPICE_DRDGEO computes the Jacobian matrix of the transformation from
   geodetic to rectangular coordinates.

I/O


   Given:

      lon      geodetic longitude(s) of point(s) (radians).

               [1,n] = size(lon); double = class(lon)

      lat      geodetic latitude(s) of point(s) (radians).

               [1,n] = size(lat); double = class(lat)

      alt      Altitude(s) of point(s) above the reference spheroid. Units of
               `alt' must match those of `re'.

               [1,n] = size(alt); double = class(alt)

      re       equatorial radius of a reference spheroid.

               [1,1] = size(re); double = class(re)

               This spheroid is a volume of revolution: its horizontal cross
               sections are circular. The shape of the spheroid is defined by
               an equatorial radius `re' and a polar radius `rp'. Units of
               `re' must match those of `alt'.

      f        the flattening coefficient

               [1,1] = size(f); double = class(f)

                   f = (re-rp) / re

               where `rp' is the polar radius of the spheroid. (More
               importantly rp = re*(1-f).) The units of `rp' match those
               of `re'.

   the call:

      [jacobi] = cspice_drdgeo( lon, lat, alt, re, f )

   returns:

      jacobi   the matrix(es) of partial derivatives of the conversion between
               geodetic and rectangular coordinates.

               If [1,1] = size(lon) then [3,3]   = size(jacobi)
               If [1,n] = size(lon) then [3,3,n] = size(jacobi)
                                          double = class(jacobi)

               It has the form

                 .-                             -.
                 |  dx/dlon   dx/dlat  dx/dalt   |
                 |                               |
                 |  dy/dlon   dy/dlat  dy/dalt   |
                 |                               |
                 |  dz/dlon   dz/dlat  dz/dalt   |
                 `-                             -'

               evaluated at the input values of `lon', `lat' and `alt'.

               The formulae for computing `x', `y', and `z' from
               geodetic coordinates are given below.

                  x = [alt +        re/g(lat,f)]*cos(lon)*cos(lat)


                  y = [alt +        re/g(lat,f)]*sin(lon)*cos(lat)

                                    2
                  z = [alt + re*(1-f) /g(lat,f)]*         sin(lat)

               where

                   re is the polar radius of the reference spheroid.

                   f  is the flattening factor (the polar radius is
                       obtained by multiplying the equatorial radius by 1-f).

                   g( lat, f ) is given by

                                2             2     2
                      sqrt ( cos (lat) + (1-f) * sin (lat) )

               `jacobi' returns with the same vectorization measure (N)
               as `lon', `lat' and `alt'.

Parameters


   None.

Examples


   Any numerical results shown for this example may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Find the geodetic state of the earth as seen from
      Mars in the IAU_MARS reference frame at January 1, 2005 TDB.
      Map this state back to rectangular coordinates as a check.

      Use the meta-kernel shown below to load the required SPICE
      kernels.


         KPL/MK

         File name: drdgeo_ex1.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            pck00010.tpc                  Planet orientation and
                                          radii
            naif0009.tls                  Leapseconds


         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'pck00010.tpc',
                                'naif0009.tls'  )

         \begintext

         End of meta-kernel


      Example code begins here.


      function drdgeo_ex1()

         %
         % Load SPK, PCK, and LSK kernels, use a meta kernel for
         % convenience.
         %
         cspice_furnsh( 'drdgeo_ex1.tm' );

         %
         % Look up the radii for Mars.  Although we
         % omit it here, we could first call badkpv_c
         % to make sure the variable BODY499_RADII
         % has three elements and numeric data type.
         % If the variable is not present in the kernel
         % pool, cspice_bodvrd will signal an error.
         %
         [radii] = cspice_bodvrd( 'MARS', 'RADII', 3 );

         %
         % Compute flattening coefficient.
         %
         re =  radii(1);
         rp =  radii(3);
         f  =  ( re - rp ) / re;

         %
         % Look up the apparent state of earth as seen from Mars at
         % January 1, 2005 TDB, relative to the IAU_MARS reference
         % frame.
         %
         [et] = cspice_str2et( 'January 1, 2005 TDB' );

         [state, lt] = cspice_spkezr( 'Earth', et,    'IAU_MARS',         ...
                                      'LT+S',  'Mars'           );

         %
         % Convert position to geodetic coordinates.
         %
         [lon, lat, alt] = cspice_recgeo( state(1:3), re, f );

         %
         % Convert velocity to geodetic coordinates.
         %
         [jacobi] = cspice_dgeodr( state(1), state(2), state(3), re, f );

         geovel   = jacobi * state(4:6);

         %
         % As a check, convert the geodetic state back to
         % rectangular coordinates.
         %
         [rectan] = cspice_georec( lon, lat, alt, re, f );

         [jacobi] = cspice_drdgeo( lon, lat, alt, re, f );

         drectn   = jacobi * geovel;

         fprintf( ' \n' )
         fprintf( 'Rectangular coordinates:\n' )
         fprintf( ' \n' )
         fprintf( ' X (km)                 =  %17.8e\n', state(1) )
         fprintf( ' Y (km)                 =  %17.8e\n', state(2) )
         fprintf( ' Z (km)                 =  %17.8e\n', state(3) )
         fprintf( ' \n' )
         fprintf( 'Rectangular velocity:\n' )
         fprintf( ' \n' )
         fprintf( ' dX/dt (km/s)           =  %17.8e\n', state(4) )
         fprintf( ' dY/dt (km/s)           =  %17.8e\n', state(5) )
         fprintf( ' dZ/dt (km/s)           =  %17.8e\n', state(6) )
         fprintf( ' \n' )
         fprintf( 'Ellipsoid shape parameters: \n' )
         fprintf( ' \n' )
         fprintf( ' Equatorial radius (km) =  %17.8e\n', re )
         fprintf( ' Polar radius      (km) =  %17.8e\n', rp )
         fprintf( ' Flattening coefficient =  %17.8e\n', f )
         fprintf( ' \n' )
         fprintf( 'Geodetic coordinates:\n' )
         fprintf( ' \n' )
         fprintf( ' Longitude (deg)        =  %17.8e\n', lon / cspice_rpd )
         fprintf( ' Latitude  (deg)        =  %17.8e\n', lat / cspice_rpd )
         fprintf( ' Altitude  (km)         =  %17.8e\n', alt )
         fprintf( ' \n' )
         fprintf( 'Geodetic velocity:\n' )
         fprintf( ' \n' )
         fprintf( ' d Longitude/dt (deg/s) =  %17.8e\n',                  ...
                                    geovel(1)/cspice_rpd )
         fprintf( ' d Latitude/dt  (deg/s) =  %17.8e\n',                  ...
                                    geovel(2)/cspice_rpd )
         fprintf( ' d Altitude/dt  (km/s)  =  %17.8e\n', geovel(3) )
         fprintf( ' \n' )
         fprintf( 'Rectangular coordinates from inverse mapping:\n' )
         fprintf( ' \n' )
         fprintf( ' X (km)                 =  %17.8e\n', rectan(1) )
         fprintf( ' Y (km)                 =  %17.8e\n', rectan(2) )
         fprintf( ' Z (km)                 =  %17.8e\n', rectan(3) )
         fprintf( ' \n' )
         fprintf( 'Rectangular velocity from inverse mapping:\n' )
         fprintf( ' \n' )
         fprintf( ' dX/dt (km/s)           =  %17.8e\n', drectn(1) )
         fprintf( ' dY/dt (km/s)           =  %17.8e\n', drectn(2) )
         fprintf( ' dZ/dt (km/s)           =  %17.8e\n', drectn(3) )
         fprintf( ' \n' )

         %
         % It's always good form to unload kernels after use,
         % particularly in Matlab due to data persistence.
         %
         cspice_kclear


      When this program was executed on a Mac/Intel/Octave6.x/64-bit
      platform, the output was:


      Rectangular coordinates:

       X (km)                 =    -7.60961826e+07
       Y (km)                 =     3.24363805e+08
       Z (km)                 =     4.74704840e+07

      Rectangular velocity:

       dX/dt (km/s)           =     2.29520749e+04
       dY/dt (km/s)           =     5.37601112e+03
       dZ/dt (km/s)           =    -2.08811490e+01

      Ellipsoid shape parameters:

       Equatorial radius (km) =     3.39619000e+03
       Polar radius      (km) =     3.37620000e+03
       Flattening coefficient =     5.88600756e-03

      Geodetic coordinates:

       Longitude (deg)        =     1.03202903e+02
       Latitude  (deg)        =     8.10898757e+00
       Altitude  (km)         =     3.36531823e+08

      Geodetic velocity:

       d Longitude/dt (deg/s) =    -4.05392876e-03
       d Latitude/dt  (deg/s) =    -3.31899337e-06
       d Altitude/dt  (km/s)  =    -1.12116015e+01

      Rectangular coordinates from inverse mapping:

       X (km)                 =    -7.60961826e+07
       Y (km)                 =     3.24363805e+08
       Z (km)                 =     4.74704840e+07

      Rectangular velocity from inverse mapping:

       dX/dt (km/s)           =     2.29520749e+04
       dY/dt (km/s)           =     5.37601112e+03
       dZ/dt (km/s)           =    -2.08811490e+01


Particulars


   It is often convenient to describe the motion of an object in
   the geodetic coordinate system. However, when performing
   vector computations its hard to beat rectangular coordinates.

   To transform states given with respect to geodetic coordinates
   to states with respect to rectangular coordinates, one makes use
   of the Jacobian of the transformation between the two systems.

   Given a state in geodetic coordinates

        ( lon, lat, alt, dlon, dlat, dalt )

   the velocity in rectangular coordinates is given by the matrix
   equation:

                  t          |                                 t
      (dx, dy, dz)   = jacobi|             * (dlon, dlat, dalt)
                             |(lon,lat,alt)


   This routine computes the matrix

            |
      jacobi|
            |(lon,lat,alt)

Exceptions


   1)  If the flattening coefficient is greater than or equal to one,
       the error SPICE(VALUEOUTOFRANGE) is signaled by a routine in
       the call tree of this routine.

   2)  If the equatorial radius is non-positive, the error
       SPICE(BADRADIUS) is signaled by a routine in the call tree of
       this routine.

   3)  If any of the input arguments, `lon', `lat', `alt', `re' or
       `f', is undefined, an error is signaled by the Matlab error
       handling system.

   4)  If any of the input arguments, `lon', `lat', `alt', `re' or
       `f', is not of the expected type, or it does not have the
       expected dimensions and size, an error is signaled by the Mice
       interface.

   5)  If the input vectorizable arguments `lon', `lat' and `alt' do
       not have the same measure of vectorization (N), an error is
       signaled by the Mice interface.

Files


   None.

Restrictions


   None.

Required_Reading


   MICE.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   S.C. Krening        (JPL)
   E.D. Wright         (JPL)

Version


   -Mice Version 1.1.0, 01-NOV-2021 (EDW) (JDR)

       Edited the header to comply with NAIF standard. Added complete code
       example.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections.

       Eliminated use of "lasterror" in rethrow.

       Removed reference to the function's corresponding CSPICE header from
       -Required_Reading section.

   -Mice Version 1.0.0, 12-MAR-2012 (EDW) (SCK)

Index_Entries


   Jacobian of rectangular w.r.t. geodetic coordinates


Fri Dec 31 18:44:24 2021