Table of contents
CSPICE_AZLREC converts from range, azimuth and elevation of a point to
rectangular coordinates.
Given:
range the distance of the point from the origin.
[1,1] = size(range); double = class(range)
The input should be in terms of the same units in which the
output is desired.
Although negative values for `range' are allowed, its
use may lead to undesired results. See the -Exceptions
section for a discussion on this topic.
az the azimuth of the point.
[1,1] = size(az); double = class(az)
This is the angle between the projection onto the XY plane
of the vector from the origin to the point and the +X axis of
the reference frame. `az' is zero at the +X axis.
The way azimuth is measured depends on the value of
the logical flag `azccw'. See the descriptions of the
argument `azccw' for details.
The range (i.e., the set of allowed values) of `az' is
unrestricted. See the -Exceptions section for a
discussion on the `az' range.
Units are radians.
el the elevation of the point.
[1,1] = size(el); double = class(el)
This is the angle between the vector from the origin to the
point and the XY plane. `el' is zero at the XY plane.
The way elevation is measured depends on the value of
the logical flag `elplsz'. See the descriptions of the
argument `elplsz' for details.
The range (i.e., the set of allowed values) of `el' is
[-pi/2, pi/2], but no error checking is done to ensure
that `el' is within this range. See the -Exceptions
section for a discussion on the `el' range.
Units are radians.
azccw a flag indicating how the azimuth is measured.
[1,1] = size(azccw); logical = class(azccw)
If `azccw' is true, the azimuth increases in the
counterclockwise direction; otherwise it increases
in the clockwise direction.
elplsz a flag indicating how the elevation is measured.
[1,1] = size(elplsz); logical = class(elplsz)
If `elplsz' is true, the elevation increases from
the XY plane toward +Z; otherwise toward -Z.
the call:
[rectan] = cspice_azlrec( range, az, el, azccw, elplsz )
returns:
rectan an array containing the rectangular coordinates of the point.
[3,1] = size(rectan); double = class(rectan)
The units associated with the point are those
associated with the input `range'.
None.
Any numerical results shown for these examples may differ between
platforms as the results depend on the SPICE kernels used as input
and the machine specific arithmetic implementation.
1) Create four tables showing a variety of azimuth/elevation
coordinates and the corresponding rectangular coordinates,
resulting from the different choices of the `azccw' and `elplsz'
flags.
Corresponding azimuth/elevation and rectangular coordinates
are listed to three decimal places. Input angles are in
degrees.
Example code begins here.
function azlrec_ex1()
%
% Local parameters.
%
NREC = 11;
%
% Define the input azimuth/elevation coordinates and the
% different choices of the `azccw' and `elplsz' flags.
%
range = [ 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, ...
1.0, 1.414, 1.414, 1.414, 1.732 ]';
az = [ 0.0, 0.0, 270.0, 0.0, 180.0, 90.0, ...
0.0, 315.0, 0.0, 270.0, 315.0 ]';
el = [ 0.0, 0.0, 0.0, -90.0, 0.0, 0.0, ...
90.0, 0.0, -45.0, -45.0, -35.264 ]';
azccw = [false, true]';
elplsz = [false, true]';
%
% Create a table for each combination of `azccw' and `elplsz'.
%
for i=1:2
for j=1:2
%
% Display the flag settings.
%
msg = 'AZCCW = #; ELPLSZ = #';
[msg] = cspice_repml( msg, '#', azccw(i), 'C' );
[msg] = cspice_repml( msg, '#', elplsz(j), 'C' );
fprintf( '\n' )
fprintf( '%s\n', msg )
%
% Print the banner.
%
fprintf( '\n' )
fprintf( [ ' RANGE AZ EL rect(1) ', ...
' rect(2) rect(3)\n' ] )
fprintf( [ ' ------- ------- ------- ------- ', ...
' ------- -------\n' ] )
%
% Do the conversion. Input angles in degrees.
%
for n=1:NREC
raz = az(n) * cspice_rpd;
rel = el(n) * cspice_rpd;
[rectan] = cspice_azlrec( range(n), raz, rel, ...
azccw(i), elplsz(j) );
fprintf( '%9.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n', ...
range(n), az(n), el(n), ...
rectan(1), rectan(2), rectan(3) )
end
end
end
When this program was executed on a Mac/Intel/Octave6.x/64-bit
platform, the output was:
AZCCW = False; ELPLSZ = False
RANGE AZ EL rect(1) rect(2) rect(3)
------- ------- ------- ------- ------- -------
0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.000 0.000 1.000 0.000 0.000
1.000 270.000 0.000 -0.000 1.000 0.000
1.000 0.000 -90.000 0.000 0.000 1.000
1.000 180.000 0.000 -1.000 -0.000 0.000
1.000 90.000 0.000 0.000 -1.000 0.000
1.000 0.000 90.000 0.000 0.000 -1.000
1.414 315.000 0.000 1.000 1.000 0.000
1.414 0.000 -45.000 1.000 0.000 1.000
1.414 270.000 -45.000 -0.000 1.000 1.000
1.732 315.000 -35.264 1.000 1.000 1.000
AZCCW = False; ELPLSZ = True
RANGE AZ EL rect(1) rect(2) rect(3)
------- ------- ------- ------- ------- -------
0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.000 0.000 1.000 0.000 0.000
1.000 270.000 0.000 -0.000 1.000 0.000
1.000 0.000 -90.000 0.000 0.000 -1.000
1.000 180.000 0.000 -1.000 -0.000 0.000
1.000 90.000 0.000 0.000 -1.000 0.000
1.000 0.000 90.000 0.000 0.000 1.000
1.414 315.000 0.000 1.000 1.000 0.000
1.414 0.000 -45.000 1.000 0.000 -1.000
1.414 270.000 -45.000 -0.000 1.000 -1.000
1.732 315.000 -35.264 1.000 1.000 -1.000
AZCCW = True; ELPLSZ = False
RANGE AZ EL rect(1) rect(2) rect(3)
------- ------- ------- ------- ------- -------
0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.000 0.000 1.000 0.000 0.000
1.000 270.000 0.000 -0.000 -1.000 0.000
1.000 0.000 -90.000 0.000 0.000 1.000
1.000 180.000 0.000 -1.000 0.000 0.000
1.000 90.000 0.000 0.000 1.000 0.000
1.000 0.000 90.000 0.000 0.000 -1.000
1.414 315.000 0.000 1.000 -1.000 0.000
1.414 0.000 -45.000 1.000 0.000 1.000
1.414 270.000 -45.000 -0.000 -1.000 1.000
1.732 315.000 -35.264 1.000 -1.000 1.000
AZCCW = True; ELPLSZ = True
RANGE AZ EL rect(1) rect(2) rect(3)
------- ------- ------- ------- ------- -------
0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.000 0.000 1.000 0.000 0.000
1.000 270.000 0.000 -0.000 -1.000 0.000
1.000 0.000 -90.000 0.000 0.000 -1.000
1.000 180.000 0.000 -1.000 0.000 0.000
1.000 90.000 0.000 0.000 1.000 0.000
1.000 0.000 90.000 0.000 0.000 1.000
1.414 315.000 0.000 1.000 -1.000 0.000
1.414 0.000 -45.000 1.000 0.000 -1.000
1.414 270.000 -45.000 -0.000 -1.000 -1.000
1.732 315.000 -35.264 1.000 -1.000 -1.000
2) Compute the right ascension and declination of the pointing
direction of DSS-14 station at a given epoch.
Task Description
================
In this example, we will obtain the right ascension and
declination of the pointing direction of the DSS-14 station at
a given epoch, by converting the station's pointing direction
given in azimuth and elevation to rectangular coordinates
in the station topocentric reference frame and applying a
frame transformation from DSS-14_TOPO to J2000, in order to
finally obtain the corresponding right ascension and
declination of the pointing vector.
In order to introduce the usage of the logical flags `azccw'
and `elplsz', we will assume that the azimuth is measured
counterclockwise and the elevation negative towards +Z
axis of the DSS-14_TOPO reference frame.
Kernels
=======
Use the meta-kernel shown below to load the required SPICE
kernels.
KPL/MK
File name: azlrec_ex2.tm
This meta-kernel is intended to support operation of SPICE
example programs. The kernels shown here should not be
assumed to contain adequate or correct versions of data
required by SPICE-based user applications.
In order for an application to use this meta-kernel, the
kernels referenced here must be present in the user's
current working directory.
The names and contents of the kernels referenced
by this meta-kernel are as follows:
File name Contents
--------- --------
naif0011.tls Leapseconds
earth_720101_070426.bpc Earth historical
binary PCK
earth_topo_050714.tf DSN station FK
\begindata
KERNELS_TO_LOAD = ( 'naif0011.tls',
'earth_720101_070426.bpc',
'earth_topo_050714.tf' )
\begintext
End of meta-kernel.
Example code begins here.
function azlrec_ex2()
%
% Local parameters
%
META = 'azlrec_ex2.tm';
%
% Load SPICE kernels.
%
cspice_furnsh( META );
%
% Convert the observation time to seconds past J2000 TDB.
%
obstim = '2003 OCT 13 06:00:00.000000 UTC';
[et] = cspice_str2et( obstim );
%
% Set the local topocentric frame
%
ref = 'DSS-14_TOPO';
%
% Set the station's pointing direction in azimuth and
% elevation. Set arbitrarily the range to 1.0. Azimuth
% and elevation shall be given in radians. Azimuth
% increases counterclockwise and elevation is negative
% towards +Z (above the local horizon)
%
az = 75.00;
el = -27.25;
azr = az * cspice_rpd;
elr = el * cspice_rpd;
r = 1.00;
azccw = true;
elplsz = false;
%
% Obtain the rectangular coordinates of the station's
% pointing direction.
%
[ptarg] = cspice_azlrec( r, azr, elr, azccw, elplsz );
%
% Transform the station's pointing vector from the
% local topocentric frame to J2000.
%
[rotate] = cspice_pxform( ref, 'J2000', et );
jpos = rotate * ptarg;
%
% Compute the right ascension and declination.
% Express both angles in degrees.
%
[range, ra, dec] = cspice_recrad( jpos );
ra = ra * cspice_dpr;
dec = dec * cspice_dpr;
%
% Display the computed pointing vector, the input
% data and resulting the angles.
%
fprintf( '\n' )
fprintf( 'Pointing azimuth (deg): %14.8f\n', az )
fprintf( 'Pointing elevation (deg): %14.8f\n', el )
[msg] = cspice_repml( 'Azimuth counterclockwise?: #', '#', ...
azccw, 'C' );
fprintf( '%s\n', msg )
[msg] = cspice_repml( 'Elevation positive +Z? : #', '#', ...
elplsz, 'C' );
fprintf( '%s\n', msg )
fprintf( 'Observation epoch : %s\n', obstim )
fprintf( '\n' )
fprintf( 'Pointing direction (normalized): \n' )
fprintf( ' %14.8f %14.8f %14.8f\n', ...
ptarg(1), ptarg(2), ptarg(3) )
fprintf( '\n' )
fprintf( 'Pointing right ascension (deg): %14.8f\n', ra )
fprintf( 'Pointing declination (deg): %14.8f\n', dec )
fprintf( '\n' )
%
% It's always good form to unload kernels after use,
% particularly in Matlab due to data persistence.
%
cspice_kclear
When this program was executed on a Mac/Intel/Octave6.x/64-bit
platform, the output was:
Pointing azimuth (deg): 75.00000000
Pointing elevation (deg): -27.25000000
Azimuth counterclockwise?: True
Elevation positive +Z? : False
Observation epoch : 2003 OCT 13 06:00:00.000000 UTC
Pointing direction (normalized):
0.23009457 0.85872462 0.45787392
Pointing right ascension (deg): 280.06179939
Pointing declination (deg): 26.92826084
This routine converts the azimuth, elevation, and range
of a point into the associated rectangular coordinates.
The input is defined by the distance from the center of
the reference frame (range), the angle from a reference
vector (azimuth), and the angle above the XY plane of the
reference frame (elevation).
The way azimuth and elevation are measured depends on the
values given by the user to the `azccw' and `elplsz' logical
flags. See the descriptions of these input arguments
for details.
1) If the value of the input argument `range' is negative
the output rectangular coordinates will be negated, i.e.
the resulting array will be of the same length
but opposite direction to the one that would be obtained
with a positive input argument `range' of value ||RANGE||.
2) If the value of the input argument `el' is outside the
range [-pi/2, pi/2], the results may not be as
expected.
3) If the value of the input argument `az' is outside the
range [0, 2*pi], the value will be mapped to a value
inside the range that differs from the input value by an
integer multiple of 2*pi.
4) If any of the input arguments, `range', `az', `el', `azccw' or
`elplsz', is undefined, an error is signaled by the Matlab
error handling system.
5) If any of the input arguments, `range', `az', `el', `azccw' or
`elplsz', is not of the expected type, or it does not have the
expected dimensions and size, an error is signaled by the Mice
interface.
None.
None.
MICE.REQ
None.
J. Diaz del Rio (ODC Space)
-Mice Version 1.0.0, 08-FEB-2021 (JDR)
range, az and el to rectangular coordinates
range, azimuth and elevation to rectangular
convert range, az and el to rectangular coordinates
convert range, azimuth and elevation to rectangular
|