Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
vupack

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     VUPACK ( Unpack three scalar components from a vector )

     SUBROUTINE VUPACK ( V, X, Y, Z )

Abstract

     Unpack three scalar components from a vector.

Required_Reading

     None.

Keywords

     VECTOR

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION V ( 3 )
     DOUBLE PRECISION X
     DOUBLE PRECISION Y
     DOUBLE PRECISION Z

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     V          I   Input 3-dimensional vector.
     X,
     Y,
     Z          O   Scalar components of the vector.

Detailed_Input

     V        is a double precision 3-dimensional vector.

Detailed_Output

     X,
     Y,
     Z        are the double precision scalar components of the
              vector V. The following equalities hold:

                 X = V(1)
                 Y = V(2)
                 Z = V(3)

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     Basically, this is just shorthand notation for the common
     sequence

        X = V(1)
        Y = V(2)
        Z = V(3)

     The routine is useful largely for two reasons. First, it
     reduces the chance that the programmer will make a "cut and
     paste" mistake, like

        X = V(1)
        Y = V(1)
        Z = V(1)

     Second, it makes conversions between equivalent units simpler,
     and clearer. For instance, the sequence

        X = V(1) * RPD()
        Y = V(2) * RPD()
        Z = V(3) * RPD()

     can be replaced by the (nearly) equivalent sequence

        CALL VSCLIP ( RPD(),  V    )
        CALL VUPACK ( V,   X, Y, Z )

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Suppose that you have an instrument kernel that provides,
        within a single keyword, the three frequencies used by the
        instrument, and that you want to use these frequencies
        independently within your code.

        The following code example demonstrates how to use VUPACK
        to get these frequencies into independent scalar variables.

        Use the kernel shown below, an IK defining the three
        frequencies used by an instrument with NAIF ID -999001.


           KPL/IK

           File name: vupack_ex1.ti

           The keyword below define the three frequencies used by a
           hypothetical instrument (NAIF ID -999001). They correspond
           to three filters: red, green and blue. Frequencies are
           given in micrometers.

           \begindata

              INS-999001_FREQ_RGB   = (  0.65,  0.55, 0.475 )
              INS-999001_FREQ_UNITS = ( 'MICROMETERS'       )

           \begintext


           End of IK


        Example code begins here.


              PROGRAM VUPACK_EX1
              IMPLICIT NONE

        C
        C     Local parameters.
        C
              CHARACTER*(*)         IKNAME
              PARAMETER           ( IKNAME = 'vupack_ex1.ti' )

              CHARACTER*(*)         KEYWRD
              PARAMETER           ( KEYWRD = 'INS-999001_FREQ_RGB' )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      DDATA  ( 3 )
              DOUBLE PRECISION      RED
              DOUBLE PRECISION      GREEN
              DOUBLE PRECISION      BLUE

              INTEGER               N

              LOGICAL               FOUND

        C
        C     Load the instrument kernel.
        C
              CALL FURNSH ( IKNAME )

        C
        C     Get the frequency data from the kernel pool.
        C
              CALL GDPOOL ( KEYWRD, 1, 3, N, DDATA, FOUND )

              IF ( FOUND ) THEN

                 CALL VUPACK ( DDATA, RED, GREEN, BLUE )
                 WRITE(*,'(A,F6.2)') 'Blue  (nm): ', BLUE  * 1000.D0
                 WRITE(*,'(A,F6.2)') 'Green (nm): ', GREEN * 1000.D0
                 WRITE(*,'(A,F6.2)') 'Red   (nm): ', RED   * 1000.D0

              ELSE

                 WRITE(*,*) 'No data found in the kernel pool for ',
             .              KEYWRD

              END IF

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


        Blue  (nm): 475.00
        Green (nm): 550.00
        Red   (nm): 650.00

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     W.L. Taber         (JPL)
     I.M. Underwood     (JPL)

Version

    SPICELIB Version 1.0.2, 07-SEP-2020 (JDR)

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Added complete
        code example.

        Fixed order of operands in equalities presented in
        $Detailed_Output. Updated code fragments in $Particulars to
        use in-place vector-scaling API.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (IMU)
Fri Dec 31 18:37:07 2021