qxq |
Table of contents
ProcedureQXQ (Quaternion times quaternion) SUBROUTINE QXQ ( Q1, Q2, QOUT ) AbstractMultiply two quaternions. Required_ReadingROTATION KeywordsMATH POINTING ROTATION DeclarationsIMPLICIT NONE DOUBLE PRECISION Q1 ( 0 : 3 ) DOUBLE PRECISION Q2 ( 0 : 3 ) DOUBLE PRECISION QOUT ( 0 : 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- Q1 I First SPICE quaternion factor. Q2 I Second SPICE quaternion factor. QOUT O Product of Q1 and Q2. Detailed_InputQ1 is a 4-vector representing a SPICE-style quaternion. See the discussion of quaternion styles in $Particulars below. Note that multiple styles of quaternions are in use. This routine will not work properly if the input quaternions do not conform to the SPICE convention. See the $Particulars section for details. Q2 is a second SPICE-style quaternion. Detailed_OutputQOUT is 4-vector representing the quaternion product Q1 * Q2 Representing Q(i) as the sums of scalar (real) part s(i) and vector (imaginary) part v(i) respectively, Q1 = s1 + v1 Q2 = s2 + v2 QOUT has scalar part s3 defined by s3 = s1 * s2 - <v1, v2> and vector part v3 defined by v3 = s1 * v2 + s2 * v1 + v1 x v2 where the notation < , > denotes the inner product operator and x indicates the cross product operator. ParametersNone. ExceptionsError free. FilesNone. ParticularsQuaternion Styles ----------------- There are different "styles" of quaternions used in science and engineering applications. Quaternion styles are characterized by - The order of quaternion elements - The quaternion multiplication formula - The convention for associating quaternions with rotation matrices Two of the commonly used styles are - "SPICE" > Invented by Sir William Rowan Hamilton > Frequently used in mathematics and physics textbooks - "Engineering" > Widely used in aerospace engineering applications SPICELIB subroutine interfaces ALWAYS use SPICE quaternions. Quaternions of any other style must be converted to SPICE quaternions before they are passed to SPICELIB routines. Relationship between SPICE and Engineering Quaternions ------------------------------------------------------ Let M be a rotation matrix such that for any vector V, M*V is the result of rotating V by theta radians in the counterclockwise direction about unit rotation axis vector A. Then the SPICE quaternions representing M are (+/-) ( cos(theta/2), sin(theta/2) A(1), sin(theta/2) A(2), sin(theta/2) A(3) ) while the engineering quaternions representing M are (+/-) ( -sin(theta/2) A(1), -sin(theta/2) A(2), -sin(theta/2) A(3), cos(theta/2) ) For both styles of quaternions, if a quaternion q represents a rotation matrix M, then -q represents M as well. Given an engineering quaternion QENG = ( q0, q1, q2, q3 ) the equivalent SPICE quaternion is QSPICE = ( q3, -q0, -q1, -q2 ) Associating SPICE Quaternions with Rotation Matrices ---------------------------------------------------- Let FROM and TO be two right-handed reference frames, for example, an inertial frame and a spacecraft-fixed frame. Let the symbols V , V FROM TO denote, respectively, an arbitrary vector expressed relative to the FROM and TO frames. Let M denote the transformation matrix that transforms vectors from frame FROM to frame TO; then V = M * V TO FROM where the expression on the right hand side represents left multiplication of the vector by the matrix. Then if the unit-length SPICE quaternion q represents M, where q = (q0, q1, q2, q3) the elements of M are derived from the elements of q as follows: +- -+ | 2 2 | | 1 - 2*( q2 + q3 ) 2*(q1*q2 - q0*q3) 2*(q1*q3 + q0*q2) | | | | | | 2 2 | M = | 2*(q1*q2 + q0*q3) 1 - 2*( q1 + q3 ) 2*(q2*q3 - q0*q1) | | | | | | 2 2 | | 2*(q1*q3 - q0*q2) 2*(q2*q3 + q0*q1) 1 - 2*( q1 + q2 ) | | | +- -+ Note that substituting the elements of -q for those of q in the right hand side leaves each element of M unchanged; this shows that if a quaternion q represents a matrix M, then so does the quaternion -q. To map the rotation matrix M to a unit quaternion, we start by decomposing the rotation matrix as a sum of symmetric and skew-symmetric parts: 2 M = [ I + (1-cos(theta)) OMEGA ] + [ sin(theta) OMEGA ] symmetric skew-symmetric OMEGA is a skew-symmetric matrix of the form +- -+ | 0 -n3 n2 | | | OMEGA = | n3 0 -n1 | | | | -n2 n1 0 | +- -+ The vector N of matrix entries (n1, n2, n3) is the rotation axis of M and theta is M's rotation angle. Note that N and theta are not unique. Let C = cos(theta/2) S = sin(theta/2) Then the unit quaternions Q corresponding to M are Q = +/- ( C, S*n1, S*n2, S*n3 ) The mappings between quaternions and the corresponding rotations are carried out by the SPICELIB routines Q2M {quaternion to matrix} M2Q {matrix to quaternion} M2Q always returns a quaternion with scalar part greater than or equal to zero. SPICE Quaternion Multiplication Formula --------------------------------------- Given a SPICE quaternion Q = ( q0, q1, q2, q3 ) corresponding to rotation axis A and angle theta as above, we can represent Q using "scalar + vector" notation as follows: s = q0 = cos(theta/2) v = ( q1, q2, q3 ) = sin(theta/2) * A Q = s + v Let Q1 and Q2 be SPICE quaternions with respective scalar and vector parts s1, s2 and v1, v2: Q1 = s1 + v1 Q2 = s2 + v2 We represent the dot product of v1 and v2 by <v1, v2> and the cross product of v1 and v2 by v1 x v2 Then the SPICE quaternion product is Q1*Q2 = s1*s2 - <v1,v2> + s1*v2 + s2*v1 + (v1 x v2) If Q1 and Q2 represent the rotation matrices M1 and M2 respectively, then the quaternion product Q1*Q2 represents the matrix product M1*M2 ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Given the "basis" quaternions: QID: ( 1.0, 0.0, 0.0, 0.0 ) QI : ( 0.0, 1.0, 0.0, 0.0 ) QJ : ( 0.0, 0.0, 1.0, 0.0 ) QK : ( 0.0, 0.0, 0.0, 1.0 ) the following quaternion products give these results: Product Expected result ----------- ---------------------- QI * QJ ( 0.0, 0.0, 0.0, 1.0 ) QJ * QK ( 0.0, 1.0, 0.0, 0.0 ) QK * QI ( 0.0, 0.0, 1.0, 0.0 ) QI * QI (-1.0, 0.0, 0.0, 0.0 ) QJ * QJ (-1.0, 0.0, 0.0, 0.0 ) QK * QK (-1.0, 0.0, 0.0, 0.0 ) QID * QI ( 0.0, 1.0, 0.0, 0.0 ) QI * QID ( 0.0, 1.0, 0.0, 0.0 ) QID * QJ ( 0.0, 0.0, 1.0, 0.0 ) The following code example uses QXQ to produce these results. Example code begins here. PROGRAM QXQ_EX1 IMPLICIT NONE C C Local variables C DOUBLE PRECISION QID ( 0 : 3 ) DOUBLE PRECISION QI ( 0 : 3 ) DOUBLE PRECISION QJ ( 0 : 3 ) DOUBLE PRECISION QK ( 0 : 3 ) DOUBLE PRECISION QOUT ( 0 : 3 ) C C Let QID, QI, QJ, QK be the "basis" C quaternions. C DATA QID / 1.D0, 0.D0, 0.D0, 0.D0 / DATA QI / 0.D0, 1.D0, 0.D0, 0.D0 / DATA QJ / 0.D0, 0.D0, 1.D0, 0.D0 / DATA QK / 0.D0, 0.D0, 0.D0, 1.D0 / C C Compute: C C QI x QJ = QK C QJ x QK = QI C QK x QI = QJ C CALL QXQ ( QI, QJ, QOUT ) WRITE(*,'(A,4F8.2)') 'QI x QJ =', QOUT WRITE(*,'(A,4F8.2)') ' QK =', QK WRITE(*,*) ' ' CALL QXQ ( QJ, QK, QOUT ) WRITE(*,'(A,4F8.2)') 'QJ x QK =', QOUT WRITE(*,'(A,4F8.2)') ' QI =', QI WRITE(*,*) ' ' CALL QXQ ( QK, QI, QOUT ) WRITE(*,'(A,4F8.2)') 'QK x QI =', QOUT WRITE(*,'(A,4F8.2)') ' QJ =', QJ WRITE(*,*) ' ' C C Compute: C C QI x QI == -QID C QJ x QJ == -QID C QK x QK == -QID C CALL QXQ ( QI, QI, QOUT ) WRITE(*,'(A,4F8.2)') 'QI x QI =', QOUT WRITE(*,'(A,4F8.2)') ' QID =', QID WRITE(*,*) ' ' CALL QXQ ( QJ, QJ, QOUT ) WRITE(*,'(A,4F8.2)') 'QJ x QJ =', QOUT WRITE(*,'(A,4F8.2)') ' QID =', QID WRITE(*,*) ' ' CALL QXQ ( QK, QK, QOUT ) WRITE(*,'(A,4F8.2)') 'QK x QK =', QOUT WRITE(*,'(A,4F8.2)') ' QID =', QID WRITE(*,*) ' ' C C Compute: C C QID x QI = QI C QI x QID = QI C QID x QJ = QJ C CALL QXQ ( QID, QI, QOUT ) WRITE(*,'(A,4F8.2)') 'QID x QI =', QOUT WRITE(*,'(A,4F8.2)') ' QI =', QI WRITE(*,*) ' ' CALL QXQ ( QI, QID, QOUT ) WRITE(*,'(A,4F8.2)') 'QI x QID =', QOUT WRITE(*,'(A,4F8.2)') ' QI =', QI WRITE(*,*) ' ' CALL QXQ ( QID, QJ, QOUT ) WRITE(*,'(A,4F8.2)') 'QID x QJ =', QOUT WRITE(*,'(A,4F8.2)') ' QJ =', QJ WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: QI x QJ = 0.00 0.00 0.00 1.00 QK = 0.00 0.00 0.00 1.00 QJ x QK = 0.00 1.00 0.00 0.00 QI = 0.00 1.00 0.00 0.00 QK x QI = 0.00 0.00 1.00 0.00 QJ = 0.00 0.00 1.00 0.00 QI x QI = -1.00 0.00 0.00 0.00 QID = 1.00 0.00 0.00 0.00 QJ x QJ = -1.00 0.00 0.00 0.00 QID = 1.00 0.00 0.00 0.00 QK x QK = -1.00 0.00 0.00 0.00 QID = 1.00 0.00 0.00 0.00 QID x QI = 0.00 1.00 0.00 0.00 QI = 0.00 1.00 0.00 0.00 QI x QID = 0.00 1.00 0.00 0.00 QI = 0.00 1.00 0.00 0.00 QID x QJ = 0.00 0.00 1.00 0.00 QJ = 0.00 0.00 1.00 0.00 2) Compute the composition of two rotation matrices by converting them to quaternions and computing their product, and by directly multiplying the matrices. Example code begins here. PROGRAM QXQ_EX2 IMPLICIT NONE C C Local variables C DOUBLE PRECISION CMAT1 ( 3, 3 ) DOUBLE PRECISION CMAT2 ( 3, 3 ) DOUBLE PRECISION CMOUT ( 3, 3 ) DOUBLE PRECISION Q1 ( 0 : 3 ) DOUBLE PRECISION Q2 ( 0 : 3 ) DOUBLE PRECISION QOUT ( 0 : 3 ) INTEGER I DATA CMAT1 / 1.D0, 0.D0, 0.D0, . 0.D0, -1.D0, 0.D0, . 0.D0, 0.D0, -1.D0 / DATA CMAT2 / 0.D0, 1.D0, 0.D0, . 1.D0, 0.D0, 0.D0, . 0.D0, 0.D0, -1.D0 / C C Convert the C-matrices to quaternions. C CALL M2Q ( CMAT1, Q1 ) CALL M2Q ( CMAT2, Q2 ) C C Find the product. C CALL QXQ ( Q1, Q2, QOUT ) C C Convert the result to a C-matrix. C CALL Q2M ( QOUT, CMOUT ) WRITE(*,'(A)') 'Using quaternion product:' WRITE(*,'(3F10.4)') (CMOUT(1,I), I = 1, 3) WRITE(*,'(3F10.4)') (CMOUT(2,I), I = 1, 3) WRITE(*,'(3F10.4)') (CMOUT(3,I), I = 1, 3) C C Multiply CMAT1 and CMAT2 directly. C CALL MXM ( CMAT1, CMAT2, CMOUT ) WRITE(*,'(A)') 'Using matrix product:' WRITE(*,'(3F10.4)') (CMOUT(1,I), I = 1, 3) WRITE(*,'(3F10.4)') (CMOUT(2,I), I = 1, 3) WRITE(*,'(3F10.4)') (CMOUT(3,I), I = 1, 3) END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Using quaternion product: 0.0000 1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 Using matrix product: 0.0000 1.0000 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) VersionSPICELIB Version 1.0.2, 06-JUL-2021 (JDR) Edited the header to comply with NAIF standard. Created complete code examples from existing example and code fragments. SPICELIB Version 1.0.1, 26-FEB-2008 (NJB) Updated header; added information about SPICE quaternion conventions. SPICELIB Version 1.0.0, 18-AUG-2002 (NJB) |
Fri Dec 31 18:36:41 2021