el2cgv |
Table of contents
ProcedureEL2CGV ( Ellipse to center and generating vectors ) SUBROUTINE EL2CGV ( ELLIPS, CENTER, SMAJOR, SMINOR ) AbstractConvert a SPICE ellipse to a center vector and two generating vectors. The selected generating vectors are semi-axes of the ellipse. Required_ReadingELLIPSES KeywordsELLIPSE GEOMETRY DeclarationsIMPLICIT NONE INTEGER UBEL PARAMETER ( UBEL = 9 ) DOUBLE PRECISION ELLIPS ( UBEL ) DOUBLE PRECISION CENTER ( 3 ) DOUBLE PRECISION SMAJOR ( 3 ) DOUBLE PRECISION SMINOR ( 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- ELLIPS I A SPICE ellipse. CENTER, SMAJOR, SMINOR O Center and semi-axes of ELLIPS. Detailed_InputELLIPS is a SPICE ellipse. Detailed_OutputCENTER, SMAJOR, SMINOR are, respectively, a center vector, a semi-major axis vector, and a semi-minor axis vector that generate the input ellipse. This ellipse is the set of points CENTER + cos(theta) SMAJOR + sin(theta) SMINOR where theta ranges over the interval (-pi, pi]. ParametersNone. ExceptionsError free. FilesNone. ParticularsSPICE ellipses serve to simplify calling sequences and reduce the chance for error in declaring and describing argument lists involving ellipses. The set of ellipse conversion routines is CGV2EL ( Center and generating vectors to ellipse ) EL2CGV ( Ellipse to center and generating vectors ) A word about the output of this routine: the semi-major axis of an ellipse is a vector of largest possible magnitude in the set cos(theta) VEC1 + sin(theta) VEC2, where theta is in the interval (-pi, pi]. There are two such vectors; they are additive inverses of each other. The semi-minor axis is an analogous vector of smallest possible magnitude. The semi-major and semi-minor axes are orthogonal to each other. If SMAJOR and SMINOR are choices of semi-major and semi-minor axes, then the input ellipse can also be represented as the set of points CENTER + cos(theta) SMAJOR + sin(theta) SMINOR where theta ranges over the interval (-pi, pi]. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Given a SPICE ellipse structure, extract its components into independent variables. Example code begins here. PROGRAM EL2CGV_EX1 IMPLICIT NONE C C Local constants. C INTEGER UBEL PARAMETER ( UBEL = 9 ) C C Local variables. C DOUBLE PRECISION CENTER ( 3 ) DOUBLE PRECISION ECENTR ( 3 ) DOUBLE PRECISION ELLIPS ( UBEL ) DOUBLE PRECISION SMAJOR ( 3 ) DOUBLE PRECISION SMINOR ( 3 ) DOUBLE PRECISION VEC1 ( 3 ) DOUBLE PRECISION VEC2 ( 3 ) INTEGER I C C Define the center and two linearly independent C generating vectors of an ellipse (the vectors need not C be linearly independent). C DATA CENTER / -1.D0, 1.D0, -1.D0 / DATA VEC1 / 1.D0, 1.D0, 1.D0 / DATA VEC2 / 1.D0, -1.D0, 1.D0 / C C Create the ELLIPS. C CALL CGV2EL ( CENTER, VEC1, VEC2, ELLIPS ) C C In a real application, please use SPICELIB API EL2CGV C to retrieve the center and generating vectors from the C ellipse structure (see next block). C WRITE(*,'(A)') 'SPICE ellipse:' WRITE(*,'(A,3F10.6)') ' Semi-minor axis:', . ( ELLIPS(I), I=7,9 ) WRITE(*,'(A,3F10.6)') ' Semi-major axis:', . ( ELLIPS(I), I=4,6 ) WRITE(*,'(A,3F10.6)') ' Center :', . ( ELLIPS(I), I=1,3 ) WRITE(*,*) ' ' C C Obtain the center and generating vectors from the C ELLIPS. C CALL EL2CGV ( ELLIPS, ECENTR, SMAJOR, SMINOR ) WRITE(*,'(A)') 'SPICE ellipse (using EL2CGV):' WRITE(*,'(A,3F10.6)') ' Semi-minor axis:', SMINOR WRITE(*,'(A,3F10.6)') ' Semi-major axis:', SMAJOR WRITE(*,'(A,3F10.6)') ' Center :', ECENTR END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: SPICE ellipse: Semi-minor axis: 0.000000 1.414214 0.000000 Semi-major axis: 1.414214 -0.000000 1.414214 Center : -1.000000 1.000000 -1.000000 SPICE ellipse (using EL2CGV): Semi-minor axis: 0.000000 1.414214 0.000000 Semi-major axis: 1.414214 -0.000000 1.414214 Center : -1.000000 1.000000 -1.000000 2) Given an ellipsoid and a viewpoint exterior to it, calculate the limb ellipse as seen from that viewpoint. Example code begins here. PROGRAM EL2CGV_EX2 IMPLICIT NONE C C Local constants. C INTEGER UBEL PARAMETER ( UBEL = 9 ) C C Local variables. C DOUBLE PRECISION A DOUBLE PRECISION B DOUBLE PRECISION C DOUBLE PRECISION ECENTR ( 3 ) DOUBLE PRECISION LIMB ( UBEL ) DOUBLE PRECISION SMAJOR ( 3 ) DOUBLE PRECISION SMINOR ( 3 ) DOUBLE PRECISION VIEWPT ( 3 ) C C Define a viewpoint exterior to the ellipsoid. C DATA VIEWPT / 2.D0, 0.D0, 0.D0 / C C Define an ellipsoid. C A = SQRT( 2.D0 ) B = 2.D0 * SQRT( 2.D0 ) C = SQRT( 2.D0 ) C C Calculate the limb ellipse as seen by from the C viewpoint. C CALL EDLIMB ( A, B, C, VIEWPT, LIMB ) C C Output the structure components. C CALL EL2CGV ( LIMB, ECENTR, SMAJOR, SMINOR ) WRITE(*,'(A)') 'Limb ellipse as seen from viewpoint:' WRITE(*,'(A,3F11.6)') ' Semi-minor axis:', SMINOR WRITE(*,'(A,3F11.6)') ' Semi-major axis:', SMAJOR WRITE(*,'(A,3F11.6)') ' Center :', ECENTR END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Limb ellipse as seen from viewpoint: Semi-minor axis: 0.000000 0.000000 -1.000000 Semi-major axis: 0.000000 2.000000 -0.000000 Center : 1.000000 0.000000 0.000000 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 24-AUG-2021 (JDR) Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Added complete code example. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 02-NOV-1990 (NJB) |
Fri Dec 31 18:36:20 2021