cgv2el |
Table of contents
ProcedureCGV2EL ( Center and generating vectors to ellipse ) SUBROUTINE CGV2EL ( CENTER, VEC1, VEC2, ELLIPS ) AbstractForm a SPICE ellipse from a center vector and two generating vectors. Required_ReadingELLIPSES KeywordsELLIPSE GEOMETRY DeclarationsIMPLICIT NONE INTEGER UBEL PARAMETER ( UBEL = 9 ) DOUBLE PRECISION CENTER ( 3 ) DOUBLE PRECISION VEC1 ( 3 ) DOUBLE PRECISION VEC2 ( 3 ) DOUBLE PRECISION ELLIPS ( UBEL ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- CENTER, VEC1, VEC2 I Center and two generating vectors for an ellipse. ELLIPS O The SPICE ellipse defined by the input vectors. Detailed_InputCENTER, VEC1, VEC2 are a center and two generating vectors defining an ellipse in three-dimensional space. The ellipse is the set of points CENTER + cos(theta) VEC1 + sin(theta) VEC2 where theta ranges over the interval (-pi, pi]. VEC1 and VEC2 need not be linearly independent. Detailed_OutputELLIPS is the SPICE ellipse defined by the input vectors. ParametersNone. Exceptions1) If VEC1 and VEC2 are linearly dependent, ELLIPS will be degenerate. SPICE ellipses are allowed to represent degenerate geometric ellipses. FilesNone. ParticularsSPICE ellipses serve to simplify calling sequences and reduce the chance for error in declaring and describing argument lists involving ellipses. The set of ellipse conversion routines is CGV2EL ( Center and generating vectors to ellipse ) EL2CGV ( Ellipse to center and generating vectors ) ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Create a SPICE ellipse given its center and two linearly independent generating vectors of the ellipse. Example code begins here. PROGRAM CGV2EL_EX1 IMPLICIT NONE C C Local constants. C INTEGER UBEL PARAMETER ( UBEL = 9 ) C C Local variables. C DOUBLE PRECISION CENTER ( 3 ) DOUBLE PRECISION ECENTR ( 3 ) DOUBLE PRECISION ELLIPS ( UBEL ) DOUBLE PRECISION SMAJOR ( 3 ) DOUBLE PRECISION SMINOR ( 3 ) DOUBLE PRECISION VEC1 ( 3 ) DOUBLE PRECISION VEC2 ( 3 ) INTEGER I C C Define the center and two linearly independent C generating vectors of an ellipse (the vectors need not C be linearly independent). C DATA CENTER / -1.D0, 1.D0, -1.D0 / DATA VEC1 / 1.D0, 1.D0, 1.D0 / DATA VEC2 / 1.D0, -1.D0, 1.D0 / C C Create the ELLIPS. C CALL CGV2EL ( CENTER, VEC1, VEC2, ELLIPS ) C C In a real application, please use SPICELIB API EL2CGV C to retrieve the center and generating vectors from the C ellipse structure (see next block). C WRITE(*,'(A)') 'SPICE ellipse:' WRITE(*,'(A,3F10.6)') ' Semi-minor axis:', . ( ELLIPS(I), I=7,9 ) WRITE(*,'(A,3F10.6)') ' Semi-major axis:', . ( ELLIPS(I), I=4,6 ) WRITE(*,'(A,3F10.6)') ' Center :', . ( ELLIPS(I), I=1,3 ) WRITE(*,*) ' ' C C Obtain the center and generating vectors from the C ELLIPS. C CALL EL2CGV ( ELLIPS, ECENTR, SMAJOR, SMINOR ) WRITE(*,'(A)') 'SPICE ellipse (using EL2CGV):' WRITE(*,'(A,3F10.6)') ' Semi-minor axis:', SMINOR WRITE(*,'(A,3F10.6)') ' Semi-major axis:', SMAJOR WRITE(*,'(A,3F10.6)') ' Center :', ECENTR END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: SPICE ellipse: Semi-minor axis: 0.000000 1.414214 0.000000 Semi-major axis: 1.414214 -0.000000 1.414214 Center : -1.000000 1.000000 -1.000000 SPICE ellipse (using EL2CGV): Semi-minor axis: 0.000000 1.414214 0.000000 Semi-major axis: 1.414214 -0.000000 1.414214 Center : -1.000000 1.000000 -1.000000 2) Find the intersection of an ellipse with a plane. Example code begins here. PROGRAM CGV2EL_EX2 IMPLICIT NONE C C Local constants. C INTEGER UBEL PARAMETER ( UBEL = 9 ) INTEGER UBPL PARAMETER ( UBPL = 4 ) C C Local variables. C DOUBLE PRECISION CENTER ( 3 ) DOUBLE PRECISION ELLIPS ( UBEL ) DOUBLE PRECISION NORMAL ( 3 ) DOUBLE PRECISION PLANE ( UBPL ) DOUBLE PRECISION VEC1 ( 3 ) DOUBLE PRECISION VEC2 ( 3 ) DOUBLE PRECISION XPTS ( 3, 2 ) INTEGER I INTEGER NXPTS C C The ellipse is defined by the vectors CENTER, VEC1, and C VEC2. The plane is defined by the normal vector NORMAL C and the CENTER. C DATA CENTER / 0.D0, 0.D0, 0.D0 / DATA VEC1 / 1.D0, 7.D0, 2.D0 / DATA VEC2 / -1.D0, 1.D0, 3.D0 / DATA NORMAL / 0.D0, 1.D0, 0.D0 / C C Make a SPICE ellipse and a plane. C CALL CGV2EL ( CENTER, VEC1, VEC2, ELLIPS ) CALL NVP2PL ( NORMAL, CENTER, PLANE ) C C Find the intersection of the ellipse and plane. C NXPTS is the number of intersection points; XPTS C are the points themselves. C CALL INELPL ( ELLIPS, PLANE, NXPTS, . XPTS(1,1), XPTS(1,2) ) WRITE(*,'(A,I2)') 'Number of intercept points: ', NXPTS DO I = 1, NXPTS WRITE(*,'(A,I2,A,3F10.6)') ' Point', I, ':', . XPTS(1,I), XPTS(2,I), XPTS(3,I) END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Number of intercept points: 2 Point 1: 1.131371 0.000000 -2.687006 Point 2: -1.131371 -0.000000 2.687006 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 24-AUG-2021 (JDR) Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Added complete code example. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 02-NOV-1990 (NJB) |
Fri Dec 31 18:36:01 2021