| cgv2el |
|
Table of contents
Procedure
CGV2EL ( Center and generating vectors to ellipse )
SUBROUTINE CGV2EL ( CENTER, VEC1, VEC2, ELLIPS )
Abstract
Form a SPICE ellipse from a center vector and two generating
vectors.
Required_Reading
ELLIPSES
Keywords
ELLIPSE
GEOMETRY
Declarations
IMPLICIT NONE
INTEGER UBEL
PARAMETER ( UBEL = 9 )
DOUBLE PRECISION CENTER ( 3 )
DOUBLE PRECISION VEC1 ( 3 )
DOUBLE PRECISION VEC2 ( 3 )
DOUBLE PRECISION ELLIPS ( UBEL )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
CENTER,
VEC1,
VEC2 I Center and two generating vectors for an ellipse.
ELLIPS O The SPICE ellipse defined by the input vectors.
Detailed_Input
CENTER,
VEC1,
VEC2 are a center and two generating vectors defining
an ellipse in three-dimensional space. The
ellipse is the set of points
CENTER + cos(theta) VEC1 + sin(theta) VEC2
where theta ranges over the interval (-pi, pi].
VEC1 and VEC2 need not be linearly independent.
Detailed_Output
ELLIPS is the SPICE ellipse defined by the input
vectors.
Parameters
None.
Exceptions
1) If VEC1 and VEC2 are linearly dependent, ELLIPS will be
degenerate. SPICE ellipses are allowed to represent
degenerate geometric ellipses.
Files
None.
Particulars
SPICE ellipses serve to simplify calling sequences and reduce
the chance for error in declaring and describing argument lists
involving ellipses.
The set of ellipse conversion routines is
CGV2EL ( Center and generating vectors to ellipse )
EL2CGV ( Ellipse to center and generating vectors )
Examples
The numerical results shown for these examples may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Create a SPICE ellipse given its center and two linearly
independent generating vectors of the ellipse.
Example code begins here.
PROGRAM CGV2EL_EX1
IMPLICIT NONE
C
C Local constants.
C
INTEGER UBEL
PARAMETER ( UBEL = 9 )
C
C Local variables.
C
DOUBLE PRECISION CENTER ( 3 )
DOUBLE PRECISION ECENTR ( 3 )
DOUBLE PRECISION ELLIPS ( UBEL )
DOUBLE PRECISION SMAJOR ( 3 )
DOUBLE PRECISION SMINOR ( 3 )
DOUBLE PRECISION VEC1 ( 3 )
DOUBLE PRECISION VEC2 ( 3 )
INTEGER I
C
C Define the center and two linearly independent
C generating vectors of an ellipse (the vectors need not
C be linearly independent).
C
DATA CENTER / -1.D0, 1.D0, -1.D0 /
DATA VEC1 / 1.D0, 1.D0, 1.D0 /
DATA VEC2 / 1.D0, -1.D0, 1.D0 /
C
C Create the ELLIPS.
C
CALL CGV2EL ( CENTER, VEC1, VEC2, ELLIPS )
C
C In a real application, please use SPICELIB API EL2CGV
C to retrieve the center and generating vectors from the
C ellipse structure (see next block).
C
WRITE(*,'(A)') 'SPICE ellipse:'
WRITE(*,'(A,3F10.6)') ' Semi-minor axis:',
. ( ELLIPS(I), I=7,9 )
WRITE(*,'(A,3F10.6)') ' Semi-major axis:',
. ( ELLIPS(I), I=4,6 )
WRITE(*,'(A,3F10.6)') ' Center :',
. ( ELLIPS(I), I=1,3 )
WRITE(*,*) ' '
C
C Obtain the center and generating vectors from the
C ELLIPS.
C
CALL EL2CGV ( ELLIPS, ECENTR, SMAJOR, SMINOR )
WRITE(*,'(A)') 'SPICE ellipse (using EL2CGV):'
WRITE(*,'(A,3F10.6)') ' Semi-minor axis:', SMINOR
WRITE(*,'(A,3F10.6)') ' Semi-major axis:', SMAJOR
WRITE(*,'(A,3F10.6)') ' Center :', ECENTR
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
SPICE ellipse:
Semi-minor axis: 0.000000 1.414214 0.000000
Semi-major axis: 1.414214 -0.000000 1.414214
Center : -1.000000 1.000000 -1.000000
SPICE ellipse (using EL2CGV):
Semi-minor axis: 0.000000 1.414214 0.000000
Semi-major axis: 1.414214 -0.000000 1.414214
Center : -1.000000 1.000000 -1.000000
2) Find the intersection of an ellipse with a plane.
Example code begins here.
PROGRAM CGV2EL_EX2
IMPLICIT NONE
C
C Local constants.
C
INTEGER UBEL
PARAMETER ( UBEL = 9 )
INTEGER UBPL
PARAMETER ( UBPL = 4 )
C
C Local variables.
C
DOUBLE PRECISION CENTER ( 3 )
DOUBLE PRECISION ELLIPS ( UBEL )
DOUBLE PRECISION NORMAL ( 3 )
DOUBLE PRECISION PLANE ( UBPL )
DOUBLE PRECISION VEC1 ( 3 )
DOUBLE PRECISION VEC2 ( 3 )
DOUBLE PRECISION XPTS ( 3, 2 )
INTEGER I
INTEGER NXPTS
C
C The ellipse is defined by the vectors CENTER, VEC1, and
C VEC2. The plane is defined by the normal vector NORMAL
C and the CENTER.
C
DATA CENTER / 0.D0, 0.D0, 0.D0 /
DATA VEC1 / 1.D0, 7.D0, 2.D0 /
DATA VEC2 / -1.D0, 1.D0, 3.D0 /
DATA NORMAL / 0.D0, 1.D0, 0.D0 /
C
C Make a SPICE ellipse and a plane.
C
CALL CGV2EL ( CENTER, VEC1, VEC2, ELLIPS )
CALL NVP2PL ( NORMAL, CENTER, PLANE )
C
C Find the intersection of the ellipse and plane.
C NXPTS is the number of intersection points; XPTS
C are the points themselves.
C
CALL INELPL ( ELLIPS, PLANE, NXPTS,
. XPTS(1,1), XPTS(1,2) )
WRITE(*,'(A,I2)') 'Number of intercept points: ', NXPTS
DO I = 1, NXPTS
WRITE(*,'(A,I2,A,3F10.6)') ' Point', I, ':',
. XPTS(1,I), XPTS(2,I), XPTS(3,I)
END DO
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
Number of intercept points: 2
Point 1: 1.131371 0.000000 -2.687006
Point 2: -1.131371 -0.000000 2.687006
Restrictions
None.
Literature_References
None.
Author_and_Institution
N.J. Bachman (JPL)
J. Diaz del Rio (ODC Space)
W.L. Taber (JPL)
Version
SPICELIB Version 1.1.0, 24-AUG-2021 (JDR)
Added IMPLICIT NONE statement.
Edited the header to comply with NAIF standard.
Added complete code example.
SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)
Comment section for permuted index source lines was added
following the header.
SPICELIB Version 1.0.0, 02-NOV-1990 (NJB)
|
Fri Dec 31 18:36:01 2021