drdcyl |
Table of contents
ProcedureDRDCYL (Derivative of rectangular w.r.t. cylindrical) SUBROUTINE DRDCYL ( R, CLON, Z, JACOBI ) AbstractCompute the Jacobian matrix of the transformation from cylindrical to rectangular coordinates. Required_ReadingNone. KeywordsCOORDINATES DERIVATIVES MATRIX DeclarationsIMPLICIT NONE DOUBLE PRECISION R DOUBLE PRECISION CLON DOUBLE PRECISION Z DOUBLE PRECISION JACOBI ( 3, 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- R I Distance of a point from the origin. CLON I Angle of the point from the XZ plane in radians. Z I Height of the point above the XY plane. JACOBI O Matrix of partial derivatives. Detailed_InputR is the distance of the point of interest from Z-axis. CLON is the cylindrical angle (in radians) of the point of interest from the XZ plane. The angle increases in the counterclockwise sense about the +Z axis. Z is the height of the point above XY plane. Detailed_OutputJACOBI is the matrix of partial derivatives of the conversion between cylindrical and rectangular coordinates. It has the form .- -. | DX/DR DX/DCLON DX/DZ | | | | DY/DR DY/DCLON DY/DZ | | | | DZ/DR DZ/DCLON DZ/DZ | `- -' evaluated at the input values of R, CLON and Z. Here X, Y, and Z are given by the familiar formulae X = R*COS(CLON) Y = R*SIN(CLON) Z = Z ParametersNone. ExceptionsError free. FilesNone. ParticularsIt is often convenient to describe the motion of an object in the cylindrical coordinate system. However, when performing vector computations its hard to beat rectangular coordinates. To transform states given with respect to cylindrical coordinates to states with respect to rectangular coordinates, one uses the Jacobian of the transformation between the two systems. Given a state in cylindrical coordinates ( r, clon, z, dr, dclon, dz ) the velocity in rectangular coordinates is given by the matrix equation: t | t (dx, dy, dz) = JACOBI| * (dr, dclon, dz) |(r,clon,z) This routine computes the matrix | JACOBI| |(r,clon,z) ExamplesThe numerical results shown for this example may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Find the cylindrical state of the Earth as seen from Mars in the IAU_MARS reference frame at January 1, 2005 TDB. Map this state back to rectangular coordinates as a check. Use the meta-kernel shown below to load the required SPICE kernels. KPL/MK File name: drdcyl_ex1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de421.bsp Planetary ephemeris pck00010.tpc Planet orientation and radii naif0009.tls Leapseconds \begindata KERNELS_TO_LOAD = ( 'de421.bsp', 'pck00010.tpc', 'naif0009.tls' ) \begintext End of meta-kernel Example code begins here. PROGRAM DRDCYL_EX1 IMPLICIT NONE C C SPICELIB functions C DOUBLE PRECISION RPD C C Local parameters C CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,E18.8)' ) C C Local variables C DOUBLE PRECISION CLON DOUBLE PRECISION DRECTN ( 3 ) DOUBLE PRECISION ET DOUBLE PRECISION JACOBI ( 3, 3 ) DOUBLE PRECISION LT DOUBLE PRECISION CYLVEL ( 3 ) DOUBLE PRECISION RECTAN ( 3 ) DOUBLE PRECISION R DOUBLE PRECISION STATE ( 6 ) DOUBLE PRECISION Z C C Load SPK, PCK and LSK kernels, use a meta kernel for C convenience. C CALL FURNSH ( 'drdcyl_ex1.tm' ) C C Look up the apparent state of earth as seen from Mars C at January 1, 2005 TDB, relative to the IAU_MARS C reference frame. C CALL STR2ET ( 'January 1, 2005 TDB', ET ) CALL SPKEZR ( 'Earth', ET, 'IAU_MARS', 'LT+S', . 'Mars', STATE, LT ) C C Convert position to cylindrical coordinates. C CALL RECCYL ( STATE, R, CLON, Z ) C C Convert velocity to cylindrical coordinates. C CALL DCYLDR ( STATE(1), STATE(2), STATE(3), JACOBI ) CALL MXV ( JACOBI, STATE(4), CYLVEL ) C C As a check, convert the cylindrical state back to C rectangular coordinates. C CALL CYLREC ( R, CLON, Z, RECTAN ) CALL DRDCYL ( R, CLON, Z, JACOBI ) CALL MXV ( JACOBI, CYLVEL, DRECTN ) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km) = ', STATE(1) WRITE(*,FMT1) ' Y (km) = ', STATE(2) WRITE(*,FMT1) ' Z (km) = ', STATE(3) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular velocity:' WRITE(*,*) ' ' WRITE(*,FMT1) ' dX/dt (km/s) = ', STATE(4) WRITE(*,FMT1) ' dY/dt (km/s) = ', STATE(5) WRITE(*,FMT1) ' dZ/dt (km/s) = ', STATE(6) WRITE(*,*) ' ' WRITE(*,*) 'Cylindrical coordinates:' WRITE(*,*) ' ' WRITE(*,FMT1) ' Radius (km) = ', R WRITE(*,FMT1) ' Longitude (deg) = ', CLON/RPD() WRITE(*,FMT1) ' Z (km) = ', Z WRITE(*,*) ' ' WRITE(*,*) 'Cylindrical velocity:' WRITE(*,*) ' ' WRITE(*,FMT1) ' d Radius/dt (km/s) = ', CYLVEL(1) WRITE(*,FMT1) ' d Longitude/dt (deg/s) = ', . CYLVEL(2)/RPD() WRITE(*,FMT1) ' d Z/dt (km/s) = ', CYLVEL(3) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular coordinates from inverse ' // . 'mapping:' WRITE(*,*) ' ' WRITE(*,FMT1) ' X (km) = ', RECTAN(1) WRITE(*,FMT1) ' Y (km) = ', RECTAN(2) WRITE(*,FMT1) ' Z (km) = ', RECTAN(3) WRITE(*,*) ' ' WRITE(*,*) 'Rectangular velocity from inverse mapping:' WRITE(*,*) ' ' WRITE(*,FMT1) ' dX/dt (km/s) = ', DRECTN(1) WRITE(*,FMT1) ' dY/dt (km/s) = ', DRECTN(2) WRITE(*,FMT1) ' dZ/dt (km/s) = ', DRECTN(3) WRITE(*,*) ' ' END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: Rectangular coordinates: X (km) = -0.76096183E+08 Y (km) = 0.32436380E+09 Z (km) = 0.47470484E+08 Rectangular velocity: dX/dt (km/s) = 0.22952075E+05 dY/dt (km/s) = 0.53760111E+04 dZ/dt (km/s) = -0.20881149E+02 Cylindrical coordinates: Radius (km) = 0.33317039E+09 Longitude (deg) = 0.10320290E+03 Z (km) = 0.47470484E+08 Cylindrical velocity: d Radius/dt (km/s) = -0.83496628E+01 d Longitude/dt (deg/s) = -0.40539288E-02 d Z/dt (km/s) = -0.20881149E+02 Rectangular coordinates from inverse mapping: X (km) = -0.76096183E+08 Y (km) = 0.32436380E+09 Z (km) = 0.47470484E+08 Rectangular velocity from inverse mapping: dX/dt (km/s) = 0.22952075E+05 dY/dt (km/s) = 0.53760111E+04 dZ/dt (km/s) = -0.20881149E+02 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionJ. Diaz del Rio (ODC Space) W.L. Taber (JPL) I.M. Underwood (JPL) E.D. Wright (JPL) VersionSPICELIB Version 1.1.0, 26-OCT-2021 (JDR) Edited the header to comply with NAIF standard. Added complete code example. Changed the input argument name LONG to CLON for consistency with other routines. SPICELIB Version 1.0.1, 12-NOV-2013 (EDW) Trivial edit to header, deleted trailing whitespace on lines. SPICELIB Version 1.0.0, 19-JUL-2001 (WLT) (IMU) |
Fri Dec 31 18:36:14 2021