| drdcyl |
|
Table of contents
Procedure
DRDCYL (Derivative of rectangular w.r.t. cylindrical)
SUBROUTINE DRDCYL ( R, CLON, Z, JACOBI )
Abstract
Compute the Jacobian matrix of the transformation from
cylindrical to rectangular coordinates.
Required_Reading
None.
Keywords
COORDINATES
DERIVATIVES
MATRIX
Declarations
IMPLICIT NONE
DOUBLE PRECISION R
DOUBLE PRECISION CLON
DOUBLE PRECISION Z
DOUBLE PRECISION JACOBI ( 3, 3 )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
R I Distance of a point from the origin.
CLON I Angle of the point from the XZ plane in radians.
Z I Height of the point above the XY plane.
JACOBI O Matrix of partial derivatives.
Detailed_Input
R is the distance of the point of interest from Z-axis.
CLON is the cylindrical angle (in radians) of the point of
interest from the XZ plane. The angle increases in
the counterclockwise sense about the +Z axis.
Z is the height of the point above XY plane.
Detailed_Output
JACOBI is the matrix of partial derivatives of the conversion
between cylindrical and rectangular coordinates. It
has the form
.- -.
| DX/DR DX/DCLON DX/DZ |
| |
| DY/DR DY/DCLON DY/DZ |
| |
| DZ/DR DZ/DCLON DZ/DZ |
`- -'
evaluated at the input values of R, CLON and Z.
Here X, Y, and Z are given by the familiar formulae
X = R*COS(CLON)
Y = R*SIN(CLON)
Z = Z
Parameters
None.
Exceptions
Error free.
Files
None.
Particulars
It is often convenient to describe the motion of an object in
the cylindrical coordinate system. However, when performing
vector computations its hard to beat rectangular coordinates.
To transform states given with respect to cylindrical coordinates
to states with respect to rectangular coordinates, one uses
the Jacobian of the transformation between the two systems.
Given a state in cylindrical coordinates
( r, clon, z, dr, dclon, dz )
the velocity in rectangular coordinates is given by the matrix
equation:
t | t
(dx, dy, dz) = JACOBI| * (dr, dclon, dz)
|(r,clon,z)
This routine computes the matrix
|
JACOBI|
|(r,clon,z)
Examples
The numerical results shown for this example may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Find the cylindrical state of the Earth as seen from
Mars in the IAU_MARS reference frame at January 1, 2005 TDB.
Map this state back to rectangular coordinates as a check.
Use the meta-kernel shown below to load the required SPICE
kernels.
KPL/MK
File name: drdcyl_ex1.tm
This meta-kernel is intended to support operation of SPICE
example programs. The kernels shown here should not be
assumed to contain adequate or correct versions of data
required by SPICE-based user applications.
In order for an application to use this meta-kernel, the
kernels referenced here must be present in the user's
current working directory.
The names and contents of the kernels referenced
by this meta-kernel are as follows:
File name Contents
--------- --------
de421.bsp Planetary ephemeris
pck00010.tpc Planet orientation and
radii
naif0009.tls Leapseconds
\begindata
KERNELS_TO_LOAD = ( 'de421.bsp',
'pck00010.tpc',
'naif0009.tls' )
\begintext
End of meta-kernel
Example code begins here.
PROGRAM DRDCYL_EX1
IMPLICIT NONE
C
C SPICELIB functions
C
DOUBLE PRECISION RPD
C
C Local parameters
C
CHARACTER*(*) FMT1
PARAMETER ( FMT1 = '(A,E18.8)' )
C
C Local variables
C
DOUBLE PRECISION CLON
DOUBLE PRECISION DRECTN ( 3 )
DOUBLE PRECISION ET
DOUBLE PRECISION JACOBI ( 3, 3 )
DOUBLE PRECISION LT
DOUBLE PRECISION CYLVEL ( 3 )
DOUBLE PRECISION RECTAN ( 3 )
DOUBLE PRECISION R
DOUBLE PRECISION STATE ( 6 )
DOUBLE PRECISION Z
C
C Load SPK, PCK and LSK kernels, use a meta kernel for
C convenience.
C
CALL FURNSH ( 'drdcyl_ex1.tm' )
C
C Look up the apparent state of earth as seen from Mars
C at January 1, 2005 TDB, relative to the IAU_MARS
C reference frame.
C
CALL STR2ET ( 'January 1, 2005 TDB', ET )
CALL SPKEZR ( 'Earth', ET, 'IAU_MARS', 'LT+S',
. 'Mars', STATE, LT )
C
C Convert position to cylindrical coordinates.
C
CALL RECCYL ( STATE, R, CLON, Z )
C
C Convert velocity to cylindrical coordinates.
C
CALL DCYLDR ( STATE(1), STATE(2), STATE(3), JACOBI )
CALL MXV ( JACOBI, STATE(4), CYLVEL )
C
C As a check, convert the cylindrical state back to
C rectangular coordinates.
C
CALL CYLREC ( R, CLON, Z, RECTAN )
CALL DRDCYL ( R, CLON, Z, JACOBI )
CALL MXV ( JACOBI, CYLVEL, DRECTN )
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular coordinates:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' X (km) = ', STATE(1)
WRITE(*,FMT1) ' Y (km) = ', STATE(2)
WRITE(*,FMT1) ' Z (km) = ', STATE(3)
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular velocity:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' dX/dt (km/s) = ', STATE(4)
WRITE(*,FMT1) ' dY/dt (km/s) = ', STATE(5)
WRITE(*,FMT1) ' dZ/dt (km/s) = ', STATE(6)
WRITE(*,*) ' '
WRITE(*,*) 'Cylindrical coordinates:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' Radius (km) = ', R
WRITE(*,FMT1) ' Longitude (deg) = ', CLON/RPD()
WRITE(*,FMT1) ' Z (km) = ', Z
WRITE(*,*) ' '
WRITE(*,*) 'Cylindrical velocity:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' d Radius/dt (km/s) = ', CYLVEL(1)
WRITE(*,FMT1) ' d Longitude/dt (deg/s) = ',
. CYLVEL(2)/RPD()
WRITE(*,FMT1) ' d Z/dt (km/s) = ', CYLVEL(3)
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular coordinates from inverse ' //
. 'mapping:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' X (km) = ', RECTAN(1)
WRITE(*,FMT1) ' Y (km) = ', RECTAN(2)
WRITE(*,FMT1) ' Z (km) = ', RECTAN(3)
WRITE(*,*) ' '
WRITE(*,*) 'Rectangular velocity from inverse mapping:'
WRITE(*,*) ' '
WRITE(*,FMT1) ' dX/dt (km/s) = ', DRECTN(1)
WRITE(*,FMT1) ' dY/dt (km/s) = ', DRECTN(2)
WRITE(*,FMT1) ' dZ/dt (km/s) = ', DRECTN(3)
WRITE(*,*) ' '
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
Rectangular coordinates:
X (km) = -0.76096183E+08
Y (km) = 0.32436380E+09
Z (km) = 0.47470484E+08
Rectangular velocity:
dX/dt (km/s) = 0.22952075E+05
dY/dt (km/s) = 0.53760111E+04
dZ/dt (km/s) = -0.20881149E+02
Cylindrical coordinates:
Radius (km) = 0.33317039E+09
Longitude (deg) = 0.10320290E+03
Z (km) = 0.47470484E+08
Cylindrical velocity:
d Radius/dt (km/s) = -0.83496628E+01
d Longitude/dt (deg/s) = -0.40539288E-02
d Z/dt (km/s) = -0.20881149E+02
Rectangular coordinates from inverse mapping:
X (km) = -0.76096183E+08
Y (km) = 0.32436380E+09
Z (km) = 0.47470484E+08
Rectangular velocity from inverse mapping:
dX/dt (km/s) = 0.22952075E+05
dY/dt (km/s) = 0.53760111E+04
dZ/dt (km/s) = -0.20881149E+02
Restrictions
None.
Literature_References
None.
Author_and_Institution
J. Diaz del Rio (ODC Space)
W.L. Taber (JPL)
I.M. Underwood (JPL)
E.D. Wright (JPL)
Version
SPICELIB Version 1.1.0, 26-OCT-2021 (JDR)
Edited the header to comply with NAIF standard.
Added complete code example.
Changed the input argument name LONG to CLON for consistency
with other routines.
SPICELIB Version 1.0.1, 12-NOV-2013 (EDW)
Trivial edit to header, deleted trailing whitespace
on lines.
SPICELIB Version 1.0.0, 19-JUL-2001 (WLT) (IMU)
|
Fri Dec 31 18:36:14 2021