Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cyllat

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     CYLLAT ( Cylindrical to latitudinal )

     SUBROUTINE CYLLAT ( R, CLON, Z,  RADIUS, LON, LAT )

Abstract

     Convert from cylindrical to latitudinal coordinates.

Required_Reading

     None.

Keywords

     CONVERSION
     COORDINATES

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION    R
     DOUBLE PRECISION    CLON
     DOUBLE PRECISION    Z
     DOUBLE PRECISION    RADIUS
     DOUBLE PRECISION    LON
     DOUBLE PRECISION    LAT

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     R          I   Distance of point from Z axis.
     CLON       I   Cylindrical angle of point from XZ plane(radians).
     Z          I   Height of point above XY plane.
     RADIUS     O   Distance of point from origin.
     LON        O   Longitude of point (radians).
     LAT        O   Latitude of point (radians).

Detailed_Input

     R        is the distance of the input point from Z axis.

     CLON     is the cylindrical angle of the point from XZ plane
              (radians).

     Z        is the height of the point above XY plane.

Detailed_Output

     RADIUS   is the distance of the input point from origin.

     LON      is the longitude (i.e. angle from the XZ plane) of
              the input point (radians). LON is set equal to CLON.

     LAT      is the latitude (i.e. angle above the XY plane) of the
              input point (radians). The range of LAT is [-pi, pi].

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     This routine converts coordinates given in cylindrical
     coordinates to coordinates in latitudinal coordinates.

     Latitudinal coordinates are defined by a distance from a central
     reference point, an angle from a reference meridian, and an angle
     above the equator of a sphere centered at the central reference
     point.

Examples

     The numerical results shown for these examples may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Compute the cylindrical coordinates of the position of the
        Moon as seen from the Earth, and convert them to latitudinal
        and rectangular coordinates.

        Use the meta-kernel shown below to load the required SPICE
        kernels.


           KPL/MK

           File name: cyllat_ex1.tm

           This meta-kernel is intended to support operation of SPICE
           example programs. The kernels shown here should not be
           assumed to contain adequate or correct versions of data
           required by SPICE-based user applications.

           In order for an application to use this meta-kernel, the
           kernels referenced here must be present in the user's
           current working directory.

           The names and contents of the kernels referenced
           by this meta-kernel are as follows:

              File name                     Contents
              ---------                     --------
              de421.bsp                     Planetary ephemeris
              naif0012.tls                  Leapseconds


           \begindata

              KERNELS_TO_LOAD = ( 'de421.bsp',
                                  'naif0012.tls'  )

           \begintext

           End of meta-kernel


        Example code begins here.


              PROGRAM CYLLAT_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR

        C
        C     Local parameters
        C
              CHARACTER*(*)         FMT1
              PARAMETER           ( FMT1 = '(A,F20.8)' )

        C
        C     Local variables
        C
              DOUBLE PRECISION      CLON
              DOUBLE PRECISION      ET
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      LT
              DOUBLE PRECISION      POS    ( 3 )
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      RECTAN ( 3 )
              DOUBLE PRECISION      R
              DOUBLE PRECISION      Z

        C
        C     Load SPK and LSK kernels, use a meta kernel for
        C     convenience.
        C
              CALL FURNSH ( 'cyllat_ex1.tm' )

        C
        C     Look up the geometric state of the Moon as seen from
        C     the Earth at 2017 Mar 20, relative to the J2000
        C     reference frame.
        C
              CALL STR2ET ( '2017 Mar 20', ET )

              CALL SPKPOS ( 'Moon',  ET,  'J2000', 'NONE',
             .              'Earth', POS, LT               )

        C
        C     Convert the position vector POS to cylindrical
        C     coordinates.
        C
              CALL RECCYL ( POS, R, CLON, Z )

        C
        C     Convert the cylindrical coordinates to latitudinal.
        C
              CALL CYLLAT ( R, CLON, Z, RADIUS, LON, LAT )

        C
        C     Convert the latitudinal coordinates to rectangular.
        C
              CALL LATREC ( RADIUS, LON, LAT, RECTAN )


              WRITE(*,*) ' '
              WRITE(*,*) 'Original rectangular coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X          (km): ', POS(1)
              WRITE(*,FMT1) '  Y          (km): ', POS(2)
              WRITE(*,FMT1) '  Z          (km): ', POS(3)
              WRITE(*,*) ' '
              WRITE(*,*) 'Cylindrical coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius     (km): ', R
              WRITE(*,FMT1) '  Longitude (deg): ', CLON*DPR()
              WRITE(*,FMT1) '  Z          (km): ', Z
              WRITE(*,*) ' '
              WRITE(*,*) 'Latitudinal coordinates:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  Radius     (km): ', RADIUS
              WRITE(*,FMT1) '  Longitude (deg): ', LON*DPR()
              WRITE(*,FMT1) '  Latitude  (deg): ', LAT*DPR()
              WRITE(*,*) ' '
              WRITE(*,*) 'Rectangular coordinates from LATREC:'
              WRITE(*,*) ' '
              WRITE(*,FMT1) '  X          (km): ', RECTAN(1)
              WRITE(*,FMT1) '  Y          (km): ', RECTAN(2)
              WRITE(*,FMT1) '  Z          (km): ', RECTAN(3)
              WRITE(*,*) ' '

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Original rectangular coordinates:

          X          (km):      -55658.44323296
          Y          (km):     -379226.32931475
          Z          (km):     -126505.93063865

         Cylindrical coordinates:

          Radius     (km):      383289.01777726
          Longitude (deg):         261.65040211
          Z          (km):     -126505.93063865

         Latitudinal coordinates:

          Radius     (km):      403626.33912495
          Longitude (deg):         261.65040211
          Latitude  (deg):         -18.26566077

         Rectangular coordinates from LATREC:

          X          (km):      -55658.44323296
          Y          (km):     -379226.32931475
          Z          (km):     -126505.93063865


     2) Create a table showing a variety of cylindrical coordinates
        and the corresponding latitudinal coordinates.

        Corresponding latitudinal and cylindrical coordinates are
        listed to three decimal places. All input and output angles
        are in degrees.


        Example code begins here.


              PROGRAM CYLLAT_EX2
              IMPLICIT NONE

        C
        C     SPICELIB functions
        C
              DOUBLE PRECISION      DPR
              DOUBLE PRECISION      RPD

        C
        C     Local parameters.
        C
              INTEGER               NREC
              PARAMETER           ( NREC = 11 )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      CLON   ( NREC )
              DOUBLE PRECISION      LAT
              DOUBLE PRECISION      LON
              DOUBLE PRECISION      R      ( NREC )
              DOUBLE PRECISION      RADIUS
              DOUBLE PRECISION      RCLON
              DOUBLE PRECISION      Z      ( NREC )

              INTEGER               I

        C
        C     Define the input cylindrical coordinates. Angles
        C     in degrees.
        C

              DATA                 R    /  0.D0, 1.D0, 1.D0,
             .                             0.D0, 1.D0, 1.D0,
             .                             0.D0, 1.D0, 1.D0,
             .                             0.D0, 0.D0           /

              DATA                 CLON /  0.D0,   0.D0,  90.D0,
             .                             0.D0, 180.D0, -90.D0,
             .                             0.D0,  45.D0, 180.D0,
             .                           180.D0,  33.D0         /

              DATA                 Z    /  0.D0,   0.D0,  0.D0,
             .                             1.D0,   1.D0,  0.D0,
             .                            -1.D0,   0.D0, -1.D0,
             .                             1.D0,   0.D0         /

        C
        C     Print the banner.
        C
              WRITE(*,*) '    R       CLON      Z    '
             . //        '  RADIUS     LON     LAT   '
              WRITE(*,*) ' -------  -------  ------- '
             . //        ' -------  -------  ------- '

        C
        C     Do the conversion. Output angles in degrees.
        C
              DO I = 1, NREC

                 RCLON = CLON(I) * RPD()

                 CALL CYLLAT( R(I), RCLON, Z(I), RADIUS, LON, LAT )

                 WRITE (*,'(6F9.3)') R(I), CLON(I), Z(I),
             .                       RADIUS, LON * DPR(), LAT * DPR()

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


             R       CLON      Z      RADIUS     LON     LAT
          -------  -------  -------  -------  -------  -------
            0.000    0.000    0.000    0.000    0.000    0.000
            1.000    0.000    0.000    1.000    0.000    0.000
            1.000   90.000    0.000    1.000   90.000    0.000
            0.000    0.000    1.000    1.000    0.000   90.000
            1.000  180.000    1.000    1.414  180.000   45.000
            1.000  -90.000    0.000    1.000  -90.000    0.000
            0.000    0.000   -1.000    1.000    0.000  -90.000
            1.000   45.000    0.000    1.000   45.000    0.000
            1.000  180.000   -1.000    1.414  180.000  -45.000
            0.000  180.000    1.000    1.000  180.000   90.000
            0.000   33.000    0.000    0.000   33.000    0.000

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     B.V. Semenov       (JPL)
     W.L. Taber         (JPL)
     E.D. Wright        (JPL)

Version

    SPICELIB Version 1.1.0, 06-JUL-2021 (JDR)

        Changed the argument names LONGC and LONG to CLON and LON for
        consistency with other routines.

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Removed
        unnecessary $Revisions section. Added complete code examples.

    SPICELIB Version 1.0.3, 26-JUL-2016 (BVS)

        Minor headers edits.

    SPICELIB Version 1.0.2, 22-AUG-2001 (EDW)

        Corrected ENDIF to END IF.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT)
Fri Dec 31 18:36:06 2021