Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_sphrec

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries


Abstract


   CSPICE_SPHREC converts spherical coordinates to rectangular
   (Cartesian) coordinates.

I/O


   Given:

      r        a double precision scalar or N-vector describing the distance of
               the point from the origin.

               help, r
                  DOUBLE = Scalar   or   DOUBLE = Array[N]

      colat    a double precision scalar or N-vector describing the angle
               between the point and the positive Z-axis measured in radians.

               help, colat
                  DOUBLE = Scalar   or   DOUBLE = Array[N]

      slon     a double precision scalar or N-vector describing the angle of
               the projection of the point to the XY plane from the positive
               X-axis measured in radians.

               help, slon
                  DOUBLE = Scalar   or   DOUBLE = Array[N]

               The positive Y-axis is at longitude PI/2 radians.

   the call:

      cspice_sphrec, r, colat, slon, rectan

   returns:

      rectan   a double precision 3-vector or 3xN array containing the
               rectangular coordinates of the position or set of positions.

               help, rectan
                  DOUBLE = Array[3]   or   DOUBLE = Array[3,N]

               `rectan' returns with the same measure of vectorization (N)
               as `r', `colat', and `slon'.

Parameters


   None.

Examples


   Any numerical results shown for these examples may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Compute the spherical coordinates of the position of the Moon
      as seen from the Earth, and convert them to rectangular
      coordinates.

      Use the meta-kernel shown below to load the required SPICE
      kernels.


         KPL/MK

         File name: sphrec_ex1.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            naif0012.tls                  Leapseconds


         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'naif0012.tls'  )

         \begintext

         End of meta-kernel


      Example code begins here.


      PRO sphrec_ex1

         ;;
         ;; Load SPK and LSK kernels, use a meta kernel for
         ;; convenience.
         ;;
         cspice_furnsh, 'sphrec_ex1.tm'

         ;;
         ;; Look up the geometric state of the Moon as seen from
         ;; the Earth at 2017 Mar 20, relative to the J2000
         ;; reference frame.
         ;;
         cspice_str2et, '2017 Mar 20', et

         cspice_spkpos, 'Moon', et, 'J2000', 'NONE', 'Earth', pos, ltime

         ;;
         ;; Convert the position vector `pos' to spherical
         ;; coordinates.
         ;;
         cspice_recsph, pos, radius, colat, slon

         ;;
         ;; Convert the spherical coordinates to rectangular.
         ;;
         cspice_sphrec, radius, colat, slon, rectan

         print, ' '
         print, 'Original rectangular coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' X           (km): ', pos[0]
         print, format='(A,F20.8)', ' Y           (km): ', pos[1]
         print, format='(A,F20.8)', ' Z           (km): ', pos[2]
         print, ' '
         print, 'Spherical coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' Radius      (km): ', radius
         print, format='(A,F20.8)', ' Colatitude (deg): ',                   $
                                    colat*cspice_dpr( )
         print, format='(A,F20.8)', ' Longitude  (deg): ',                   $
                                    slon*cspice_dpr( )
         print, ' '
         print, 'Rectangular coordinates from cspice_sphrec:'
         print, ' '
         print, format='(A,F20.8)', ' X           (km): ', rectan[0]
         print, format='(A,F20.8)', ' Y           (km): ', rectan[1]
         print, format='(A,F20.8)', ' Z           (km): ', rectan[2]
         print, ' '

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


      Original rectangular coordinates:

       X           (km):      -55658.44323296
       Y           (km):     -379226.32931475
       Z           (km):     -126505.93063865

      Spherical coordinates:

       Radius      (km):      403626.33912495
       Colatitude (deg):         108.26566077
       Longitude  (deg):         -98.34959789

      Rectangular coordinates from cspice_sphrec:

       X           (km):      -55658.44323296
       Y           (km):     -379226.32931475
       Z           (km):     -126505.93063865


   2) Create a table showing a variety of spherical coordinates
      and the corresponding rectangular coordinates.

      Corresponding spherical and rectangular coordinates are
      listed to three decimal places. Input angles are in degrees.


      Example code begins here.


      PRO sphrec_ex2

         ;;
         ;; Local parameters.
         ;;
         NREC = 11

         ;;
         ;; Define the input spherical coordinates. Angles are in degrees.
         ;;
         radius = [  0.0d,  1.0d,    1.0d,    1.0d,    1.0d,    1.0d,        $
                     1.0d,  1.4142d, 1.4142d, 1.4142d, 1.7320d       ]

         colat  = [  0.0d, 90.0d,    90.0d,   0.0d,   90.0d,   90.0d,        $
                   180.0d, 90.0d,    45.0d,  45.0d,   54.7356d       ]

         slon   = [  0.0d,  0.0d,    90.0d,   0.0d,  180.0d,  -90.0d,        $
                     0.0d, 45.0d,     0.0d,  90.0d,   45.0d          ]

         ;;
         ;; Print the banner.
         ;;
         print, '   radius   colat     slon   rect[0]  rect[1]  rect[2]'
         print, '  -------  -------  -------  -------  -------  -------'

         ;;
         ;; Do the conversion.
         ;;
         for i=0, NREC - 1L do begin

            rcolat = colat[i] * cspice_rpd( )
            rslon  = slon[i]  * cspice_rpd( )

            cspice_sphrec, radius[i], rcolat, rslon, rectan

            print, format='(3F9.3,$)', radius[i], colat[i],  slon[i]
            print, format='(3F9.3)',   rectan[0], rectan[1], rectan[2]

         endfor

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


         radius   colat     slon   rect[0]  rect[1]  rect[2]
        -------  -------  -------  -------  -------  -------
          0.000    0.000    0.000    0.000    0.000    0.000
          1.000   90.000    0.000    1.000    0.000    0.000
          1.000   90.000   90.000    0.000    1.000    0.000
          1.000    0.000    0.000    0.000    0.000    1.000
          1.000   90.000  180.000   -1.000    0.000    0.000
          1.000   90.000  -90.000    0.000   -1.000    0.000
          1.000  180.000    0.000    0.000    0.000   -1.000
          1.414   90.000   45.000    1.000    1.000    0.000
          1.414   45.000    0.000    1.000    0.000    1.000
          1.414   45.000   90.000    0.000    1.000    1.000
          1.732   54.736   45.000    1.000    1.000    1.000


Particulars


   This routine returns the rectangular coordinates of a point
   whose position is input in spherical coordinates.

   Spherical coordinates are defined by a distance from a central
   reference point, an angle from a reference meridian, and an angle
   from the Z-axis. The co-latitude of the positive Z-axis is
   zero. The longitude of the positive Y-axis is PI/2 radians.

Exceptions


   1)  If any of the input arguments, `r', `colat' or `slon', is
       undefined, an error is signaled by the IDL error handling
       system.

   2)  If any of the input arguments, `r', `colat' or `slon', is not
       of the expected type, or it does not have the expected
       dimensions and size, an error is signaled by the Icy
       interface.

   3)  If the input vectorizable arguments `r', `colat' and `slon' do
       not have the same measure of vectorization (N), an error is
       signaled by the Icy interface.

   4)  If the output argument `rectan' is not a named variable, an
       error is signaled by the Icy interface.

Files


   None.

Restrictions


   None.

Required_Reading


   ICY.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)

Version


   -Icy Version 1.1.0, 13-AUG-2021 (JDR)

       Edited the -Examples section to comply with NAIF standard.
       Added complete code examples.

       Changed the input argument name "lon" to "slon" for consistency
       with other routines.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections, and
       completed -Particulars section.

       Removed reference to the routine's corresponding CSPICE header from
       -Abstract section.

       Added arguments' type and size information in the -I/O section.

   -Icy Version 1.0.2, 05-FEB-2008 (EDW)

       Edited -I/O section, replaced comment

          "returns with the same order"

       with

          "returns with the same measure of vectorization"

   -Icy Version 1.0.1, 09-DEC-2005 (EDW)

       Added -Examples section.

   -Icy Version 1.0.0, 16-JUN-2003 (EDW)

Index_Entries


   spherical to rectangular coordinates



Fri Dec 31 18:43:07 2021