Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_sphcyl

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries


Abstract


   CSPICE_SPHCYL converts spherical coordinates to cylindrical
   coordinates.

I/O


   Given:

      radius   the scalar double precision distance of the point from origin.

               help, radius
                  DOUBLE = Scalar

      colat    the scalar double precision polar angle (co-latitude) of the
               point measured in radians.

               help, colat
                  DOUBLE = Scalar

      slon     the scalar double precision azimuthal angle (longitude) of the
               point measured in radians.

               help, slon
                  DOUBLE = Scalar

   the call:

      cspice_sphcyl, radius, colat, slon, r, clon, z

   returns the values:

      r        the scalar double precision value for distance of the point from
               Z-axis.

               help, r
                  DOUBLE = Scalar

      clon     the scalar double precision value for the cylindrical angle of
               the point from XZ plane as measured in radians.

               help, clon
                  DOUBLE = Scalar

      z        the scalar double precision value for the height of the point
               above XY plane.

               help, z
                  DOUBLE = Scalar

Parameters


   None.

Examples


   Any numerical results shown for these examples may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Compute the spherical coordinates of the position of the Moon
      as seen from the Earth, and convert them to cylindrical and
      rectangular coordinates.

      Use the meta-kernel shown below to load the required SPICE
      kernels.


         KPL/MK

         File name: sphcyl_ex1.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            naif0012.tls                  Leapseconds


         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'naif0012.tls'  )

         \begintext

         End of meta-kernel


      Example code begins here.


      PRO sphcyl_ex1

         ;;
         ;; Load SPK and LSK kernels, use a meta kernel for
         ;; convenience.
         ;;
         cspice_furnsh, 'sphcyl_ex1.tm'

         ;;
         ;; Look up the geometric state of the Moon as seen from
         ;; the Earth at 2017 Mar 20, relative to the J2000
         ;; reference frame.
         ;;
         cspice_str2et, '2017 Mar 20', et

         cspice_spkpos, 'Moon', et, 'J2000', 'NONE', 'Earth', pos, ltime

         ;;
         ;; Convert the position vector `pos' to spherical
         ;; coordinates.
         ;;
         cspice_recsph, pos, radius, colat, slon

         ;;
         ;; Convert the spherical coordinates to cylindrical.
         ;;
         cspice_sphcyl, radius, colat, slon, r, clon, z

         ;;
         ;; Convert the cylindrical coordinates to rectangular.
         ;;
         cspice_cylrec, r, clon, z, rectan

         print, ' '
         print, 'Original rectangular coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' X           (km): ', pos[0]
         print, format='(A,F20.8)', ' Y           (km): ', pos[1]
         print, format='(A,F20.8)', ' Z           (km): ', pos[2]
         print, ' '
         print, 'Spherical coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' Radius      (km): ', radius
         print, format='(A,F20.8)', ' Colatitude (deg): ',                   $
                                    colat*cspice_dpr( )
         print, format='(A,F20.8)', ' Longitude  (deg): ',                   $
                                    slon*cspice_dpr( )
         print, ' '
         print, 'Cylindrical coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' Radius      (km): ', r
         print, format='(A,F20.8)', ' Longitude  (deg): ',                   $
                                    clon*cspice_dpr( )
         print, format='(A,F20.8)', ' Z           (km): ', z
         print, ' '
         print, 'Rectangular coordinates from cspice_cylrec:'
         print, ' '
         print, format='(A,F20.8)', ' X           (km): ', rectan[0]
         print, format='(A,F20.8)', ' Y           (km): ', rectan[1]
         print, format='(A,F20.8)', ' Z           (km): ', rectan[2]
         print, ' '

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


      Original rectangular coordinates:

       X           (km):      -55658.44323296
       Y           (km):     -379226.32931475
       Z           (km):     -126505.93063865

      Spherical coordinates:

       Radius      (km):      403626.33912495
       Colatitude (deg):         108.26566077
       Longitude  (deg):         -98.34959789

      Cylindrical coordinates:

       Radius      (km):      383289.01777726
       Longitude  (deg):         -98.34959789
       Z           (km):     -126505.93063865

      Rectangular coordinates from cspice_cylrec:

       X           (km):      -55658.44323296
       Y           (km):     -379226.32931475
       Z           (km):     -126505.93063865


   2) Create a table showing a variety of spherical coordinates
      and the corresponding cylindrical coordinates.

      Corresponding spherical and cylindrical coordinates are
      listed to three decimal places. Input and output angles are
      in degrees.


      Example code begins here.


      PRO sphcyl_ex2

         ;;
         ;; Local parameters.
         ;;
         NREC = 11

         ;;
         ;; Define the input spherical coordinates. Angles in degrees.
         ;;
         radius = [  0.0d,  1.0d,   1.0d,    1.0d,   1.4142d,  1.0d,         $
                     1.0d,  1.0d,   1.4142d, 1.0d,   0.0d           ]

         colat  = [  0.0d, 90.0d,  90.0d,    0.0d,  45.0d,    90.0d,         $
                   180.0d, 90.0d, 135.0d,    0.0d,  90.0d           ]

         slon   = [  0.0d,  0.0d,  90.0d,    0.0d, 180.0d,   -90.0d,         $
                     0.0d, 45.0d, 180.0d,  180.0d,  33.0d           ]

         ;;
         ;; Print the banner.
         ;;
         print, '   radius   colat     slon      r       clon      z'
         print, '  -------  -------  -------  -------  -------  -------'

         ;;
         ;; Do the conversion. Output angles in degrees.
         ;;
         for i=0, NREC - 1L do begin

            rcolat = colat[i] * cspice_rpd( )
            rslon  = slon[i]  * cspice_rpd( )

            cspice_sphcyl, radius[i], rcolat, rslon, r, clon, z

            print, format='(3F9.3,$)', radius[i], colat[i], slon[i]
            print, format='(3F9.3)', r, clon * cspice_dpr( ), z

         endfor

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


         radius   colat     slon      r       clon      z
        -------  -------  -------  -------  -------  -------
          0.000    0.000    0.000    0.000    0.000    0.000
          1.000   90.000    0.000    1.000    0.000    0.000
          1.000   90.000   90.000    1.000   90.000    0.000
          1.000    0.000    0.000    0.000    0.000    1.000
          1.414   45.000  180.000    1.000  180.000    1.000
          1.000   90.000  -90.000    1.000  -90.000    0.000
          1.000  180.000    0.000    0.000    0.000   -1.000
          1.000   90.000   45.000    1.000   45.000    0.000
          1.414  135.000  180.000    1.000  180.000   -1.000
          1.000    0.000  180.000    0.000  180.000    1.000
          0.000   90.000   33.000    0.000   33.000    0.000


   3) Other than the obvious conversion between coordinate systems
      this routine could be used to obtain the axial projection
      from a sphere to a cylinder about the z-axis that contains
      the equator of the sphere.

      Such a projection is valuable because it preserves the
      areas between regions on the sphere and their projections to
      the cylinder.


      Example code begins here.


      PRO sphcyl_ex3

         ;;
         ;; Define the point whose projection is to be
         ;; computed.
         ;;
         radius =   100.0
         slon   =    45.0 * cspice_rpd()
         colat  =   102.5 * cspice_rpd()

         ;;
         ;; Convert the spherical coordinates to cylindrical.
         ;;
         cspice_sphcyl, radius, colat, slon, r, clon, z

         print, 'Coordinates of the projected point on cylinder:'
         print, ' '
         print, format='(A,F23.11)', ' Radius     (km): ', r
         print, format='(A,F23.11)', ' Longitude (deg): ', clon*cspice_dpr()
         print, format='(A,F23.11)', ' Z          (km): ', z

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


      Coordinates of the projected point on cylinder:

       Radius     (km):          97.62960071199
       Longitude (deg):          45.00000000000
       Z          (km):         -21.64396139381


Particulars


   This returns the cylindrical coordinates of a point whose
   position is input through spherical coordinates.

Exceptions


   1)  If any of the input arguments, `radius', `colat' or `slon', is
       undefined, an error is signaled by the IDL error handling
       system.

   2)  If any of the input arguments, `radius', `colat' or `slon', is
       not of the expected type, or it does not have the expected
       dimensions and size, an error is signaled by the Icy
       interface.

   3)  If any of the output arguments, `r', `clon' or `z', is not a
       named variable, an error is signaled by the Icy interface.

Files


   None.

Restrictions


   None.

Required_Reading


   ICY.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)

Version


   -Icy Version 1.1.0, 10-AUG-2021 (JDR)

       Edited the -Examples section to comply with NAIF standard.
       Added complete code examples.

       Changed the input argument name "lonc" to "clon" for consistency
       with other routines.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections, and
       completed -Particulars section.

       Removed reference to the routine's corresponding CSPICE header from
       -Abstract section.

       Added arguments' type and size information in the -I/O section.

   -Icy Version 1.0.1, 09-DEC-2005 (EDW)

       Added -Examples section.

   -Icy Version 1.0.0, 16-JUN-2003 (EDW)

Index_Entries


   spherical to cylindrical coordinates



Fri Dec 31 18:43:07 2021