Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_latcyl

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries


Abstract


   CSPICE_LATCYL converts from latitudinal coordinates to
   cylindrical coordinates.

I/O


   Given:

      radius   the distance of a point from the origin.

               help, radius
                  DOUBLE = Scalar

      lon      the angle of the point from the XZ plane in radians.

               help, lon
                  DOUBLE = Scalar

      lat      the angle of the point from the XY plane in radians.

               help, lat
                  DOUBLE = Scalar

   the call:

      cspice_latcyl, radius, lon, lat, r, clon, z

   returns:

      r        the distance of the point from the Z-axis.

               help, r
                  DOUBLE = Scalar

      clon     the angle of the point from the XZ plane in radians.

               help, clon
                  DOUBLE = Scalar

               `clon' is set equal to `lon'.

      z        the height of the point above the XY plane.

               help, z
                  DOUBLE = Scalar

Parameters


   None.

Examples


   Any numerical results shown for these examples may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Compute the latitudinal coordinates of the position of the Moon
      as seen from the Earth, and convert them to cylindrical and
      rectangular coordinates.

      Use the meta-kernel shown below to load the required SPICE
      kernels.


         KPL/MK

         File name: latcyl_ex1.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            naif0012.tls                  Leapseconds


         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'naif0012.tls'  )

         \begintext

         End of meta-kernel


      Example code begins here.


      PRO latcyl_ex1

         ;;
         ;; Load SPK and LSK kernels, use a meta kernel for
         ;; convenience.
         ;;
         cspice_furnsh, 'latcyl_ex1.tm'

         ;;
         ;; Look up the geometric state of the Moon as seen from
         ;; the Earth at 2017 Mar 20, relative to the J2000
         ;; reference frame.
         ;;
         cspice_str2et, '2017 Mar 20', et

         cspice_spkpos, 'Moon', et, 'J2000', 'NONE', 'Earth', pos, ltime

         ;;
         ;; Convert the position vector `pos' to latitudinal
         ;; coordinates.
         ;;
         cspice_reclat, pos, radius, lon, lat

         ;;
         ;; Convert the latitudinal coordinates to cylindrical.
         ;;
         cspice_latcyl, radius, lon, lat, r, clon, z

         ;;
         ;; Convert the cylindrical coordinates to rectangular.
         ;;
         cspice_cylrec, r, clon, z, rectan

         print, ' '
         print, 'Original rectangular coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' X          (km): ', pos[0]
         print, format='(A,F20.8)', ' Y          (km): ', pos[1]
         print, format='(A,F20.8)', ' Z          (km): ', pos[2]
         print, ' '
         print, 'Latitudinal coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' Radius     (km): ', radius
         print, format='(A,F20.8)', ' Longitude (deg): ', lon*cspice_dpr( )
         print, format='(A,F20.8)', ' Latitude  (deg): ', lat*cspice_dpr( )
         print, ' '
         print, 'Cylindrical coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' Radius     (km): ', r
         print, format='(A,F20.8)', ' Longitude (deg): ', clon*cspice_dpr( )
         print, format='(A,F20.8)', ' Z          (km): ', z
         print, ' '
         print, 'Rectangular coordinates from cspice_cylrec:'
         print, ' '
         print, format='(A,F20.8)', ' X          (km): ', rectan[0]
         print, format='(A,F20.8)', ' Y          (km): ', rectan[1]
         print, format='(A,F20.8)', ' Z          (km): ', rectan[2]
         print, ' '

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


      Original rectangular coordinates:

       X          (km):      -55658.44323296
       Y          (km):     -379226.32931475
       Z          (km):     -126505.93063865

      Latitudinal coordinates:

       Radius     (km):      403626.33912495
       Longitude (deg):         -98.34959789
       Latitude  (deg):         -18.26566077

      Cylindrical coordinates:

       Radius     (km):      383289.01777726
       Longitude (deg):         -98.34959789
       Z          (km):     -126505.93063865

      Rectangular coordinates from cspice_cylrec:

       X          (km):      -55658.44323296
       Y          (km):     -379226.32931475
       Z          (km):     -126505.93063865


   2) Create a table showing a variety of latitudinal coordinates
      and the corresponding cylindrical coordinates.

      Corresponding latitudinal and cylindrical coordinates are
      listed to three decimal places. Input and output angles are
      in degrees.


      Example code begins here.


      PRO latcyl_ex2

         ;;
         ;; Define six sets of cylindrical coordinates, `lon' and `lat'
         ;; expressed in degrees (convert in place to radians).
         ;;
         rad = [ 1.d,  1.d, sqrt(2.d), sqrt(2.d),   1.d,  0.d ]
         lon = [   0.d,  90.d, 180.d, $
                 180.d, 180.d,  33.d  ] * cspice_rpd()
         lat = [   0.d,   0.d,  45.d, $
                 -45.d,  90.d,   0.d  ] * cspice_rpd()

         ;;
         ;; Print a header for the data output.
         ;;
         print, '     r       clon       z  ', $
                '   radius    lon       lat '
         print, '  -------  -------  -------', $
                '  -------  -------  -------'

         ;;
         ;; Loop over each set of coordinates...
         ;;
         for i=0, 5 do begin

            ;;
            ;; ..convert the cylindrical coordinates to latitudinal
            ;; coordinates
            ;;
            cspice_latcyl,  rad[i], lon[i], lat[i], r, clon, z

            ;;
            ;; ...convert the `clon', `lon' and `lat' values from
            ;; radians to degrees
            ;;
            cspice_convrt, clon  , 'RADIANS', 'DEGREES', clon_degs
            cspice_convrt, lon[i], 'RADIANS', 'DEGREES', lon_degs
            cspice_convrt, lat[i], 'RADIANS', 'DEGREES', lat_degs

            ;;
            ;; Print the input and corresponding output.
            ;;
            print, FORMAT='(6D9.3)', r, clon_degs, z, $
                                     rad[i], lon_degs, lat_degs

         endfor

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


           r       clon       z     radius    lon       lat
        -------  -------  -------  -------  -------  -------
          1.000    0.000    0.000    1.000    0.000    0.000
          1.000   90.000    0.000    1.000   90.000    0.000
          1.000  180.000    1.000    1.414  180.000   45.000
          1.000  180.000   -1.000    1.414  180.000  -45.000
          0.000  180.000    1.000    1.000  180.000   90.000
          0.000   33.000    0.000    0.000   33.000    0.000


   3) Other than the obvious conversion between coordinate systems
      this routine could be used to obtain the axial projection
      from a sphere to a cylinder about the z-axis that contains
      the equator of the sphere.

      Such a projection is valuable because it preserves the
      areas between regions on the sphere and their projections to
      the cylinder.


      Example code begins here.


      PRO latcyl_ex3

         ;;
         ;; Define the point whose projection is to be
         ;; computed.
         ;;
         radius =  100.0
         lon    =   45.0  * cspice_rpd( )
         lat    =  -12.5 * cspice_rpd( )

         ;;
         ;; Convert the latitudinal coordinates to cylindrical.
         ;;
         cspice_latcyl, radius, lon, lat, r, clon, z

         print, 'Coordinates of the projected point on cylinder:'
         print, ' '
         print, format='(A,F23.11)', ' Radius     (km): ', r
         print, format='(A,F23.11)', ' Longitude (deg): ',                   $
                                     clon*cspice_dpr( )
         print, format='(A,F23.11)', ' Z          (km): ', z

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


      Coordinates of the projected point on cylinder:

       Radius     (km):          97.62960071199
       Longitude (deg):          45.00000000000
       Z          (km):         -21.64396139381


Particulars


   This routine returns the cylindrical coordinates of a point
   whose position is input in latitudinal coordinates.

   Latitudinal coordinates are defined by a distance from a central
   reference point, an angle from a reference meridian, and an angle
   above the equator of a sphere centered at the central reference
   point.

Exceptions


   1)  If any of the input arguments, `radius', `lon' or `lat', is
       undefined, an error is signaled by the IDL error handling
       system.

   2)  If any of the input arguments, `radius', `lon' or `lat', is
       not of the expected type, or it does not have the expected
       dimensions and size, an error is signaled by the Icy
       interface.

   3)  If any of the output arguments, `r', `clon' or `z', is not a
       named variable, an error is signaled by the Icy interface.

Files


   None.

Restrictions


   None.

Required_Reading


   ICY.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)

Version


   -Icy Version 1.1.0, 10-AUG-2021 (JDR)

       Edited the header to comply with NAIF standard. Added complete code
       examples.

       Changed the output argument name "lonc" to "clon" for consistency
       with other routines.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections, and
       completed -Particulars section.

       Removed reference to the routine's corresponding CSPICE header from
       -Abstract section.

       Added arguments' type and size information in the -I/O section.

   -Icy Version 1.0.1, 09-DEC-2005 (EDW)

       Added -Examples section.

   -Icy Version 1.0.0, 16-JUN-2003 (EDW)

Index_Entries


   latitudinal to cylindrical coordinates



Fri Dec 31 18:43:05 2021