Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
cspice_dskopn

Table of contents
Abstract
I/O
Parameters
Examples
Particulars
Exceptions
Files
Restrictions
Required_Reading
Literature_References
Author_and_Institution
Version
Index_Entries


Abstract


   CSPICE_DSKOPN opens a new DSK file, returning the handle
   of the opened file.

I/O


   Given:

      fname    the name of the DSK file to open.

               help, fname
                  STRING = Scalar

      ifname   the descriptive internal filename for the DSK.

               help, ifname
                  STRING = Scalar

      ncomch   the scalar integer number of characters to reserve for comments.

               help, ncomch
                  LONG = Scalar

   the call:

      cspice_dskopn, fname, ifname, ncomch, handle

   returns:

      handle   the file handle assigned to 'fname'.

               help, handle
                  LONG = Scalar

Parameters


   None.

Examples


   Any numerical results shown for this example may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.

   1) Create a three-segment DSK file using plate model data for
      Phobos. Use latitudinal, rectangular, and planetodetic
      coordinates in the respective segments. This is not a
      realistic example, but it serves to demonstrate use of
      the supported coordinate systems.

      Use the DSK kernel below to provide, for simplicity, the input
      plate and vertices data. This file has one segment only.

         phobos_3_3.bds


      Example code begins here.


      PRO dskopn_ex1

         ;;
         ;; IcyUser globally defines DSK parameters.
         ;; For more information, please see IcyUser.pro and
         ;; IcyDSK.pro.
         ;;
         @IcyUser

         SPICETRUE = 1L
         NSEG = 3

         cornam = [ 'radius', 'Z-coordinate', 'Z-coordinate', 'altitude']

         ;;
         ;; Assign names of input and output DSK files.
         ;;
         indsk = 'phobos_3_3.bds'
         dsk   = 'phobos_3_3_3seg.bds'

         if ( cspice_exists(dsk) ) then begin
            file_delete, dsk
         endif


         ;;
         ;; Open input DSK for read access; find first segment.
         ;;
         cspice_dasopr, indsk, inhan
         cspice_dlabfs, inhan, dladsc, found


         ;;
         ;; Fetch vertices and plates from input DSK file.
         ;;
         ;; Note that vertex and plate indices are 1-based.
         ;;
         print, 'Reading input data...'

         cspice_dskv02, inhan, dladsc, 1, SPICE_DSK02_MAXVRT, vrtces
         cspice_dskp02, inhan, dladsc, 1, SPICE_DSK02_MAXPLT, plates

         print, 'Done.'


         ;;
         ;; Set input array sizes required by cspice_dskmi2.
         ;;
         voxpsz = SPICE_DSK02_MAXVXP
         voxlsz = SPICE_DSK02_MXNVLS
         worksz = SPICE_DSK02_MAXCEL
         spaisz = SPICE_DSK02_SPAISZ
         makvtl = SPICETRUE

         ;;
         ;; Set fine and coarse voxel scales. (These usually
         ;; need to determined by experimentation.)
         ;;
         finscl = 5.D
         corscl = 4

         ;;
         ;; Open a new DSK file.
         ;;
         cspice_dskopn, dsk, dsk, 0, handle

         for segno=1, NSEG do begin

            ;;
            ;; Create spatial index. We won't generate a
            ;; vertex-plate mapping, so we set the flag
            ;; for creating this map to "false."
            ;;
            print, 'Creating segment ', segno
            print, 'Creating spatial index...'

            cspice_dskmi2, vrtces, plates, finscl, corscl, $
                           worksz, voxpsz, voxlsz, makvtl, $
                           spaisz, spaixd, spaixi


            print, 'Done.'

            ;;
            ;; Set up inputs describing segment attributes:
            ;;
            ;; - Central body: Phobos
            ;; - Surface ID code: user's choice.
            ;;   We use the segment number here.
            ;; - Data class: general (arbitrary) shape
            ;; - Body-fixed reference frame
            ;; - Time coverage bounds (TBD)
            ;;
            center = 401
            surfid = segno
            dclass = SPICE_DSK_GENCLS
            frame  = 'IAU_PHOBOS'

            first = -50.D * cspice_jyear()
            last  =  50.D * cspice_jyear()


            ;;
            ;; Set the coordinate system and coordinate system
            ;; bounds based on the segment index.
            ;;
            ;; Zero out the coordinate parameters to start.
            ;;
            corpar = dblarr(SPICE_DSK_NSYPAR)

            case segno of

               1 : begin

                  ;;
                  ;; Use planetocentric latitudinal coordinates. Set
                  ;; the longitude and latitude bounds.
                  ;;
                  corsys = SPICE_DSK_LATSYS

                  mncor1 = -cspice_pi()
                  mxcor1 =  cspice_pi()
                  mncor2 = -cspice_halfpi()
                  mxcor2 =  cspice_halfpi()

                  end

               2 : begin

                  ;;
                  ;; Use rectangular coordinates. Set the
                  ;; X and Y bounds.
                  ;;
                  ;; The bounds shown here were derived from
                  ;; the plate data. They lie slightly outside
                  ;; of the range spanned by the plates.
                  ;;
                  corsys = SPICE_DSK_RECSYS

                  mncor1 = -1.3D
                  mxcor1 =  1.31D
                  mncor2 = -1.21D
                  mxcor2 =  1.2D

                  end

               3 : begin

                  ;;
                  ;; Set the coordinate system to planetodetic.
                  ;;
                  corsys    = SPICE_DSK_PDTSYS

                  mncor1    = -cspice_pi()
                  mxcor1    =  cspice_pi()
                  mncor2    = -cspice_halfpi()
                  mxcor2    =  cspice_halfpi()

                  ;;
                  ;; We'll use equatorial and polar radii from
                  ;; pck00010.tpc. These normally would be fetched
                  ;; at run time, but for simplicity, we'll use
                  ;; hard-coded values.
                  ;;
                  re        = 13.D0
                  rp        =  9.1D
                  f         = ( re - rp ) / re

                  corpar = [ re, f ]

                  end

               else: message, 'Icy(BUG)'

            endcase

           ;;
           ;; Compute plate model radius bounds.
           ;;
           print, 'Computing ' + cornam[corsys-1] +' bounds of plate set...'

           cspice_dskrb2, vrtces, plates, corsys, corpar, mncor3, mxcor3

           print, 'Done.'

           ;;
           ;; Write the segment to the file.
           ;;
           print, 'Writing segment...'

           cspice_dskw02, handle, $
                          center, $
                          surfid, $
                          dclass, $
                          frame,  $
                          corsys, $
                          corpar, $
                          mncor1, $
                          mxcor1, $
                          mncor2, $
                          mxcor2, $
                          mncor3, $
                          mxcor3, $
                          first,  $
                          last,   $
                          vrtces, $
                          plates, $
                          spaixd, $
                          spaixi

         end

         ;;
         ;; Close the input DSK.
         ;;
         cspice_dskcls, handle, SPICETRUE
         cspice_dascls, inhan

      END


      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:


      Reading input data...
      Done.
      Creating segment        1
      Creating spatial index...
      Done.
      Computing radius bounds of plate set...
      Done.
      Writing segment...
      Creating segment        2
      Creating spatial index...
      Done.
      Computing Z-coordinate bounds of plate set...
      Done.
      Writing segment...
      Creating segment        3
      Creating spatial index...
      Done.
      Computing altitude bounds of plate set...
      Done.
      Writing segment...


      Note that after run completion, a new DSK exists in the output
      directory.

Particulars


   A cspice_dskcls call should balance every cspice_dskopn
   call.

Exceptions


   1)  If the input filename is blank, an error is signaled by a
       routine in the call tree of this routine. No file will be
       created.

   2)  If the specified file cannot be opened without exceeding the
       maximum allowed number of open DAS files, an error is signaled
       by a routine in the call tree of this routine. No file will be
       created.

   3)  If the file cannot be opened properly, an error is signaled by
       a routine in the call tree of this routine. No file will be
       created.

   4)  If the initial records in the file cannot be written, an error
       is signaled by a routine in the call tree of this routine. No
       file will be created.

   5)  If no logical units are available, an error is signaled by a
       routine in the call tree of this routine. No file will be
       created.

   6)  If the internal file name contains nonprinting characters
       (ASCII codes decimal 0-31 and 127-255), an error is signaled
       by a routine in the call tree of this routine. No file will be
       created.

   7)  If the number of comment characters allocated `ncomch' is
       negative, an error is signaled by a routine in the call
       tree of this routine. No file will be created.

   8)  If any of the input arguments, `fname', `ifname' or `ncomch',
       is undefined, an error is signaled by the IDL error handling
       system.

   9)  If any of the input arguments, `fname', `ifname' or `ncomch',
       is not of the expected type, or it does not have the expected
       dimensions and size, an error is signaled by the Icy
       interface.

   10) If the output argument `handle' is not a named variable, an
       error is signaled by the Icy interface.

Files


   See argument `fname'.

Restrictions


   None.

Required_Reading


   ICY.REQ
   DAS.REQ
   DSK.REQ

Literature_References


   None.

Author_and_Institution


   J. Diaz del Rio     (ODC Space)
   M. Liukis           (JPL)
   E.D. Wright         (JPL)

Version


   -Icy Version 1.0.1, 05-DEC-2021 (JDR)

       Edited the -Examples section to comply with NAIF standard.

       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections.

       Removed reference to the routine's corresponding CSPICE header from
       -Abstract section.

       Added arguments' type and size information in the -I/O section.

   -Icy Version 1.0.0, 14-DEC-2016 (ML) (EDW)

Index_Entries


   open a new DSK file



Fri Dec 31 18:43:03 2021