| 
 Table of contents 
 
 
   CSPICE_CYLLAT converts cylindrical coordinates to latitudinal
   coordinates.
 
   Given:
      r        the distance of the input point from Z axis.
               help, r
                  DOUBLE = Scalar
      clon     the cylindrical angle of the point from XZ plane (radians).
               help, clon
                  DOUBLE = Scalar
      z        the height of the point above XY plane.
               help, z
                  DOUBLE = Scalar
   the call:
      cspice_cyllat, r, clon, z, radius, lon, lat
   returns:
      radius   the distance of the input point from origin.
               help, radius
                  DOUBLE = Scalar
      lon      the longitude (i.e. angle from the XZ plane) of the input point
               (radians).
               help, lon
                  DOUBLE = Scalar
               `lon' is set equal to `clon'.
      lat      the latitude (i.e. angle above the XY plane) of the input point
               (radians).
               help, lat
                  DOUBLE = Scalar
               The range of `lat' is [-pi, pi].
   None.
 
   Any numerical results shown for these examples may differ between
   platforms as the results depend on the SPICE kernels used as input
   and the machine specific arithmetic implementation.
   1) Compute the cylindrical coordinates of the position of the
      Moon as seen from the Earth, and convert them to latitudinal
      and rectangular coordinates.
      Use the meta-kernel shown below to load the required SPICE
      kernels.
         KPL/MK
         File name: cyllat_ex1.tm
         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.
         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.
         The names and contents of the kernels referenced
         by this meta-kernel are as follows:
            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            naif0012.tls                  Leapseconds
         \begindata
            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'naif0012.tls'  )
         \begintext
         End of meta-kernel
      Example code begins here.
      PRO cyllat_ex1
         ;;
         ;; Load SPK and LSK kernels, use a meta kernel for
         ;; convenience.
         ;;
         cspice_furnsh, 'cyllat_ex1.tm'
         ;;
         ;; Look up the geometric state of the Moon as seen from
         ;; the Earth at 2017 Mar 20, relative to the J2000
         ;; reference frame.
         ;;
         cspice_str2et, '2017 Mar 20', et
         cspice_spkpos, 'Moon', et, 'J2000', 'NONE', 'Earth', pos, ltime
         ;;
         ;; Convert the position vector `pos' to cylindrical
         ;; coordinates.
         ;;
         cspice_reccyl, pos, r, clon, z
         ;;
         ;; Convert the cylindrical coordinates to latitudinal.
         ;;
         cspice_cyllat, r, clon, z, radius, lon, lat
         ;;
         ;; Convert the latitudinal coordinates to rectangular.
         ;;
         cspice_latrec, radius, lon, lat, rectan
         print, ' '
         print, 'Original rectangular coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' X          (km): ', pos[0]
         print, format='(A,F20.8)', ' Y          (km): ', pos[1]
         print, format='(A,F20.8)', ' Z          (km): ', pos[2]
         print, ' '
         print, 'Cylindrical coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' Radius     (km): ', r
         print, format='(A,F20.8)', ' Longitude (deg): ', clon*cspice_dpr( )
         print, format='(A,F20.8)', ' Z          (km): ', z
         print, ' '
         print, 'Latitudinal coordinates:'
         print, ' '
         print, format='(A,F20.8)', ' Radius     (km): ', radius
         print, format='(A,F20.8)', ' Longitude (deg): ', lon*cspice_dpr( )
         print, format='(A,F20.8)', ' Latitude  (deg): ', lat*cspice_dpr( )
         print, ' '
         print, 'Rectangular coordinates from cspice_latrec:'
         print, ' '
         print, format='(A,F20.8)', ' X          (km): ', rectan[0]
         print, format='(A,F20.8)', ' Y          (km): ', rectan[1]
         print, format='(A,F20.8)', ' Z          (km): ', rectan[2]
         print, ' '
      END
      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:
      Original rectangular coordinates:
       X          (km):      -55658.44323296
       Y          (km):     -379226.32931475
       Z          (km):     -126505.93063865
      Cylindrical coordinates:
       Radius     (km):      383289.01777726
       Longitude (deg):         261.65040211
       Z          (km):     -126505.93063865
      Latitudinal coordinates:
       Radius     (km):      403626.33912495
       Longitude (deg):         261.65040211
       Latitude  (deg):         -18.26566077
      Rectangular coordinates from cspice_latrec:
       X          (km):      -55658.44323296
       Y          (km):     -379226.32931475
       Z          (km):     -126505.93063865
   2) Create a table showing a variety of cylindrical coordinates
      and the corresponding latitudinal coordinates.
      Corresponding latitudinal and cylindrical coordinates are
      listed to three decimal places. All input and output angles
      are in degrees.
      Example code begins here.
      PRO cyllat_ex2
         ;;
         ;; Define six sets of cylindrical coordinates, `clon' expressed
         ;; in degrees.
         ;;
         r     = [ 1.d,  1.d,   1.d,   1.d,   0.d,  0.d ]
         clon  = [ 0.d, 90.d, 180.d, 180.d, 180.d, 33.d ]
         z     = [ 0.d,  0.d,   1.d,  -1.d,   1.d,  0.d ]
         ;;
         ;; Print a header for the data output.
         ;;
         print, '     r      clon       z   ', $
                '   radius    lon      lat  '
         print, '  -------  -------  -------',  $
                '  -------  -------  -------'
         ;;
         ;; Loop over each set of coordinates...
         ;;
         for i=0, 5 do begin
            ;;
            ;; ...convert the `clon' values from degrees to radians
            ;;
            cspice_convrt, clon[i], 'DEGREES', 'RADIANS', clon_rads
            ;;
            ;; ..convert the cylindrical coordinates to latitudinal
            ;; coordinates
            ;;
            cspice_cyllat, r[i], clon_rads, z[i], radius, lon, lat
            ;;
            ;; ...convert the `lon' and `lat' values from radians to
            ;; degrees
            ;;
            cspice_convrt, lon, 'RADIANS', 'DEGREES', lon_degs
            cspice_convrt, lat, 'RADIANS', 'DEGREES', lat_degs
            ;;
            ;; Print the input and corresponding output.
            ;;
            print, FORMAT='(6D9.3)', r[i], clon[i], z[i], $
                                     radius, lon_degs, lat_degs
         endfor
      END
      When this program was executed on a Mac/Intel/IDL8.x/64-bit
      platform, the output was:
           r      clon       z      radius    lon      lat
        -------  -------  -------  -------  -------  -------
          1.000    0.000    0.000    1.000    0.000    0.000
          1.000   90.000    0.000    1.000   90.000    0.000
          1.000  180.000    1.000    1.414  180.000   45.000
          1.000  180.000   -1.000    1.414  180.000  -45.000
          0.000  180.000    1.000    1.000  180.000   90.000
          0.000   33.000    0.000    0.000   33.000    0.000
   This routine converts coordinates given in cylindrical
   coordinates to coordinates in latitudinal coordinates.
   Latitudinal coordinates are defined by a distance from a central
   reference point, an angle from a reference meridian, and an angle
   above the equator of a sphere centered at the central reference
   point.
 
   1)  If any of the input arguments, `r', `clon' or `z', is
       undefined, an error is signaled by the IDL error handling
       system.
   2)  If any of the input arguments, `r', `clon' or `z', is not of
       the expected type, or it does not have the expected dimensions
       and size, an error is signaled by the Icy interface.
   3)  If any of the output arguments, `radius', `lon' or `lat', is
       not a named variable, an error is signaled by the Icy
       interface.
   None.
 
   None.
 
   ICY.REQ
 
   None.
 
   J. Diaz del Rio     (ODC Space)
   E.D. Wright         (JPL)
 
   -Icy Version 1.1.0, 17-JUN-2021 (JDR)
       Edited the header to comply with NAIF standard. Added complete code
       examples.
       Changed the input argument name "lonc" to "clon" for consistency
       with other routines.
       Added -Parameters, -Exceptions, -Files, -Restrictions,
       -Literature_References and -Author_and_Institution sections, and
       completed -Particulars section.
       Removed reference to the routine's corresponding CSPICE header from
       -Abstract section.
       Added arguments' type and size information in the -I/O section.
   -Icy Version 1.0.0, 16-JUN-2003 (EDW)
   cylindrical to latitudinal
 |