Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
vtmv

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     VTMV ( Vector transpose times matrix times vector, 3 dim )

     DOUBLE PRECISION FUNCTION VTMV ( V1, MATRIX, V2 )

Abstract

     Multiply the transpose of a 3-dimensional column vector,
     a 3x3 matrix, and a 3-dimensional column vector.

Required_Reading

     None.

Keywords

     MATRIX
     VECTOR

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION   V1     (   3 )
     DOUBLE PRECISION   MATRIX ( 3,3 )
     DOUBLE PRECISION   V2     (   3 )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     V1         I   3-dimensional double precision column vector.
     MATRIX     I   3x3 double precision matrix.
     V2         I   3-dimensional double precision column vector.

     The function returns the result of multiplying the transpose of
     V1 by MATRIX by V2.

Detailed_Input

     V1       is any double precision 3-dimensional column vector.

     MATRIX   is any double precision 3x3 matrix.

     V2       is any double precision 3-dimensional column vector.

Detailed_Output

     The function returns the double precision value of the equation

          T
        V1  *  MATRIX * V2

     Notice that VTMV is actually the dot product of the vector
     resulting from multiplying the transpose of V1 and MATRIX and the
     vector V2.

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     This routine implements the following vector/matrix/vector
     multiplication:

                 T
        VTMV = V1  * MATRIX * V2

     V1 is a column vector which becomes a row vector when transposed.
     V2 is a column vector.

     No checking is performed to determine whether floating point
     overflow has occurred.

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Compute the multiplication of the transpose of a 3-dimensional
        column vector, a 3x3 matrix, and a second 3-dimensional column
        vector.


        Example code begins here.


              PROGRAM VTMV_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions.
        C
              DOUBLE PRECISION      VTMV

        C
        C     Local variables.
        C
              DOUBLE PRECISION      MATRIX ( 3, 3 )
              DOUBLE PRECISION      V1     (    3 )
              DOUBLE PRECISION      V2     (    3 )

              INTEGER               I
              INTEGER               J

        C
        C     Define V1, MATRIX and V2.
        C
              DATA                  V1      /  2.D0,  4.D0, 6.D0  /
              DATA                  MATRIX  /  0.D0, -1.D0, 0.D0,
             .                                 1.D0,  0.D0, 0.D0,
             .                                 0.D0,  0.D0, 1.D0  /
              DATA                  V2      /  1.D0,  1.D0, 1.D0  /


              WRITE(*,'(A)') 'V1:'
              DO I = 1, 3

                 WRITE(*,'(F6.1)') V1(I)

              END DO

              WRITE(*,*)
              WRITE(*,'(A)') 'MATRIX:'
              DO I = 1, 3

                 WRITE(*,'(3F6.1)') ( MATRIX(I,J), J=1,3 )

              END DO

              WRITE(*,*)
              WRITE(*,'(A)') 'V2:'
              DO I = 1, 3

                 WRITE(*,'(F6.1)') V2(I)

              END DO

        C
        C     Compute the transpose of V1 times MATRIX times V2.
        C
              WRITE(*,*)
              WRITE(*,'(A,F6.1)') 'Transpose of V1 times MATRIX '
             .                 // 'times V2:', VTMV ( V1, MATRIX, V2 )


              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


        V1:
           2.0
           4.0
           6.0

        MATRIX:
           0.0   1.0   0.0
          -1.0   0.0   0.0
           0.0   0.0   1.0

        V2:
           1.0
           1.0
           1.0

        Transpose of V1 times MATRIX times V2:   4.0

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     W.M. Owen          (JPL)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 06-JUL-2021 (JDR)

        Added IMPLICIT NONE statement.

        Edited the header and code to comply with NAIF standard. Added
        complete code example based on existing example.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WMO)
Fri Dec 31 18:37:06 2021