| vlcom3 |
|
Table of contents
Procedure
VLCOM3 ( Vector linear combination, 3 dimensions )
SUBROUTINE VLCOM3 ( A, V1, B, V2, C, V3, SUM )
Abstract
Compute the vector linear combination of three double precision
3-dimensional vectors.
Required_Reading
None.
Keywords
VECTOR
Declarations
IMPLICIT NONE
DOUBLE PRECISION A
DOUBLE PRECISION V1 ( 3 )
DOUBLE PRECISION B
DOUBLE PRECISION V2 ( 3 )
DOUBLE PRECISION C
DOUBLE PRECISION V3 ( 3 )
DOUBLE PRECISION SUM ( 3 )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
A I Coefficient of V1.
V1 I Vector in 3-space.
B I Coefficient of V2.
V2 I Vector in 3-space.
C I Coefficient of V3.
V3 I Vector in 3-space.
SUM O Linear vector combination A*V1 + B*V2 + C*V3.
Detailed_Input
A is the double precision scalar variable that multiplies
V1.
V1 is an arbitrary, double precision 3-dimensional vector.
B is the double precision scalar variable that multiplies
V2.
V2 is an arbitrary, double precision 3-dimensional vector.
C is the double precision scalar variable that multiplies
V3.
V3 is a double precision 3-dimensional vector.
Detailed_Output
SUM is the double precision 3-dimensional vector which
contains the linear combination
A * V1 + B * V2 + C * V3
Parameters
None.
Exceptions
Error free.
Files
None.
Particulars
The code reflects precisely the following mathematical expression
For each value of the index I, from 1 to 3:
SUM(I) = A * V1(I) + B * V2(I) + C * V3(I)
No error checking is performed to guard against numeric overflow.
Examples
The numerical results shown for this example may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Suppose you have an instrument with an elliptical field
of view described by its angular extent along the semi-minor
and semi-major axes.
The following code example demonstrates how to create
16 vectors aiming at visualizing the field-of-view in
three dimensional space.
Example code begins here.
PROGRAM VLCOM3_EX1
IMPLICIT NONE
C
C SPICELIB functions.
C
DOUBLE PRECISION TWOPI
C
C Local parameters.
C
C Define the two angular extends, along the semi-major
C (U) and semi-minor (V) axes of the elliptical field
C of view, in radians.
C
DOUBLE PRECISION MAXANG
PARAMETER ( MAXANG = 0.07D0 )
DOUBLE PRECISION MINANG
PARAMETER ( MINANG = 0.035D0 )
C
C Local variables.
C
DOUBLE PRECISION A
DOUBLE PRECISION B
DOUBLE PRECISION STEP
DOUBLE PRECISION THETA
DOUBLE PRECISION U ( 3 )
DOUBLE PRECISION V ( 3 )
DOUBLE PRECISION VECTOR ( 3 )
DOUBLE PRECISION Z ( 3 )
INTEGER I
C
C Let U and V be orthonormal 3-vectors spanning the
C focal plane of the instrument, and Z its
C boresight.
C
DATA U / 1.D0, 0.D0, 0.D0 /
DATA V / 0.D0, 1.D0, 0.D0 /
DATA Z / 0.D0, 0.D0, 1.D0 /
C
C Find the length of the ellipse's axes. Note that
C we are dealing with unitary vectors.
C
A = TAN ( MAXANG )
B = TAN ( MINANG )
C
C Compute the vectors of interest and display them
C
THETA = 0.D0
STEP = TWOPI() / 16
DO I = 1, 16
CALL VLCOM3 ( 1.D0, Z, A * COS(THETA), U,
. B * SIN(THETA), V, VECTOR )
WRITE(*,'(I2,A,3F10.6)') I, ':', VECTOR
THETA = THETA + STEP
END DO
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
1: 0.070115 0.000000 1.000000
2: 0.064777 0.013399 1.000000
3: 0.049578 0.024759 1.000000
4: 0.026832 0.032349 1.000000
5: 0.000000 0.035014 1.000000
6: -0.026832 0.032349 1.000000
7: -0.049578 0.024759 1.000000
8: -0.064777 0.013399 1.000000
9: -0.070115 0.000000 1.000000
10: -0.064777 -0.013399 1.000000
11: -0.049578 -0.024759 1.000000
12: -0.026832 -0.032349 1.000000
13: -0.000000 -0.035014 1.000000
14: 0.026832 -0.032349 1.000000
15: 0.049578 -0.024759 1.000000
16: 0.064777 -0.013399 1.000000
Restrictions
1) No error checking is performed to guard against numeric
overflow or underflow. The user is responsible for insuring
that the input values are reasonable.
Literature_References
None.
Author_and_Institution
J. Diaz del Rio (ODC Space)
W.L. Taber (JPL)
Version
SPICELIB Version 1.1.0, 06-JUL-2021 (JDR)
Added IMPLICIT NONE statement.
Edited the header to comply with NAIF standard. Added complete
code example.
Added restriction #1.
SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)
Comment section for permuted index source lines was added
following the header.
SPICELIB Version 1.0.0, 01-NOV-1990 (WLT)
|
Fri Dec 31 18:37:05 2021