Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
vlcom

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     VLCOM ( Vector linear combination, 3 dimensions )

     SUBROUTINE VLCOM ( A, V1, B, V2, SUM )

Abstract

     Compute a vector linear combination of two double precision,
     3-dimensional vectors.

Required_Reading

     None.

Keywords

     VECTOR

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION   A
     DOUBLE PRECISION   V1  ( 3 )
     DOUBLE PRECISION   B
     DOUBLE PRECISION   V2  ( 3 )
     DOUBLE PRECISION   SUM ( 3 )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     A          I   Coefficient of V1.
     V1         I   Vector in 3-space.
     B          I   Coefficient of V2.
     V2         I   Vector in 3-space.
     SUM        O   Linear vector combination A*V1 + B*V2.

Detailed_Input

     A        is the double precision scalar variable that multiplies
              V1.

     V1       is an arbitrary, double precision 3-dimensional vector.

     B        is the double precision scalar variable that multiplies
              V2.

     V2       is an arbitrary, double precision 3-dimensional vector.

Detailed_Output

     SUM      is the double precision 3-dimensional vector which
              contains the linear combination

                 A * V1 + B * V2

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     The code reflects precisely the following mathematical expression

        For each value of the index I, from 1 to 3:

           SUM(I) = A * V1(I) + B * V2(I)

     No error checking is performed to guard against numeric overflow.

Examples

     The numerical results shown for these examples may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Suppose you want to generate a sequence of points representing
        an elliptical footprint, from the known semi-major
        and semi-minor axes.


        Example code begins here.


              PROGRAM VLCOM_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions.
        C
              DOUBLE PRECISION      TWOPI

        C
        C     Local parameters.
        C

        C
        C     Local variables.
        C
              DOUBLE PRECISION      STEP
              DOUBLE PRECISION      THETA
              DOUBLE PRECISION      SMAJOR ( 3 )
              DOUBLE PRECISION      SMINOR ( 3 )
              DOUBLE PRECISION      VECTOR ( 3 )

              INTEGER               I

        C
        C     Let SMAJOR and SMINOR be the two known semi-major and
        C     semi-minor axes of our elliptical footprint.
        C
              DATA                  SMAJOR /
             .                    0.070115D0, 0.D0,        0.D0 /

              DATA                  SMINOR /
             .                    0.D0,       0.035014D0,  0.D0 /


        C
        C     Compute the vectors of interest and display them
        C
              THETA = 0.D0
              STEP  = TWOPI() / 16

              DO I = 1, 16

                 CALL VLCOM (  COS(THETA), SMAJOR,
             .                 SIN(THETA), SMINOR, VECTOR )

                 WRITE(*,'(I2,A,3F10.6)') I, ':', VECTOR

                 THETA = THETA + STEP

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         1:  0.070115  0.000000  0.000000
         2:  0.064778  0.013399  0.000000
         3:  0.049579  0.024759  0.000000
         4:  0.026832  0.032349  0.000000
         5:  0.000000  0.035014  0.000000
         6: -0.026832  0.032349  0.000000
         7: -0.049579  0.024759  0.000000
         8: -0.064778  0.013399  0.000000
         9: -0.070115  0.000000  0.000000
        10: -0.064778 -0.013399 -0.000000
        11: -0.049579 -0.024759 -0.000000
        12: -0.026832 -0.032349 -0.000000
        13: -0.000000 -0.035014 -0.000000
        14:  0.026832 -0.032349  0.000000
        15:  0.049579 -0.024759  0.000000
        16:  0.064778 -0.013399  0.000000


     2) As a second example, suppose that U and V are orthonormal
        vectors that form a basis of a plane. Moreover suppose that we
        wish to project a vector X onto this plane.


        Example code begins here.


              PROGRAM VLCOM_EX2
              IMPLICIT NONE

        C
        C     SPICELIB functions.
        C
              DOUBLE PRECISION      VDOT

        C
        C     Local variables.
        C
              DOUBLE PRECISION      PUV    ( 3 )
              DOUBLE PRECISION      X      ( 3 )
              DOUBLE PRECISION      U      ( 3 )
              DOUBLE PRECISION      V      ( 3 )

        C
        C     Let X be an arbitrary 3-vector
        C
              DATA                  X  /  4.D0, 35.D0, -5.D0  /

        C
        C     Let U and V be orthonormal 3-vectors spanning the
        C     plane of interest.
        C
              DATA                  U  /  0.D0,  0.D0,  1.D0 /

              V(1) =  SQRT(2.D0)/2.D0
              V(2) = -SQRT(2.D0)/2.D0
              V(3) =  0.D0

        C
        C     Compute the projection of X onto this 2-dimensional
        C     plane in 3-space.
        C
              CALL VLCOM ( VDOT ( X, U ), U, VDOT ( X, V ), V, PUV )

        C
        C     Display the results.
        C
              WRITE(*,'(A,3F6.1)') 'Input vector             : ', X
              WRITE(*,'(A,3F6.1)') 'Projection into 2-d plane: ', PUV

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


        Input vector             :    4.0  35.0  -5.0
        Projection into 2-d plane:  -15.5  15.5  -5.0

Restrictions

     1)  No error checking is performed to guard against numeric
         overflow or underflow. The user is responsible for insuring
         that the input values are reasonable.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 13-AUG-2021 (JDR)

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Removed
        unnecessary $Revisions section.

        Added complete code example.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT)
Fri Dec 31 18:37:05 2021