Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
vhatg

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     VHATG ( "V-Hat", unit vector along V, general dimension )

     SUBROUTINE VHATG ( V1, NDIM, VOUT )

Abstract

     Find the unit vector along a double precision vector of
     arbitrary dimension.

Required_Reading

     None.

Keywords

     VECTOR

Declarations

     IMPLICIT NONE

     INTEGER            NDIM
     DOUBLE PRECISION   V1   ( NDIM )
     DOUBLE PRECISION   VOUT ( NDIM )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     V1         I   Vector to be normalized.
     NDIM       I   Dimension of V1 (and also VOUT).
     VOUT       O   Unit vector along V1.

Detailed_Input

     V1       is any double precision vector of arbitrary dimension.

     NDIM     is the dimension of V1 (and also VOUT).

Detailed_Output

     VOUT     is the unit vector in the direction of V1:

                           V1
                 VOUT = --------
                         ||V1||

              If V1 represents the zero vector, then VOUT will also be
              the zero vector.

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     VHATG determines the magnitude of V1 and then divides each
     component of V1 by the magnitude. This process is highly stable
     over the whole range of multi-dimensional vectors.

     This routine will detect if V1 the zero vector, and will not
     attempt to divide by zero.

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Define a set of n-dimensional vectors and find the unit vector
        along each of them.


        Example code begins here.


              PROGRAM VHATG_EX1
              IMPLICIT NONE

        C
        C     Local parameters.
        C
              INTEGER               NDIM
              PARAMETER           ( NDIM   = 4 )

              INTEGER               SETSIZ
              PARAMETER           ( SETSIZ = 2 )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      V1   ( NDIM, SETSIZ )
              DOUBLE PRECISION      VOUT ( NDIM         )

              INTEGER               I
              INTEGER               J

        C
        C     Define the vector set.
        C
              DATA                  V1  /
             .                          5.D0,  12.D0,  0.D0,  0.D0,
             .                          1.D-7,  2.D-7, 2.D-7, 0.D0  /

        C
        C     Calculate the unit vectors.
        C
              DO I=1, SETSIZ

                 CALL VHATG ( V1(1,I), NDIM, VOUT )

                 WRITE(*,'(A,4F12.7)') 'Input vector: ',
             .                         ( V1(J,I), J=1,NDIM )
                 WRITE(*,'(A,4F12.7)') 'Unit vector : ', VOUT
                 WRITE(*,*)

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


        Input vector:    5.0000000  12.0000000   0.0000000   0.0000000
        Unit vector :    0.3846154   0.9230769   0.0000000   0.0000000

        Input vector:    0.0000001   0.0000002   0.0000002   0.0000000
        Unit vector :    0.3333333   0.6666667   0.6666667   0.0000000

Restrictions

     1)  The relative number of cases whereby floating point overflow
         may occur is negligible. Thus, no error recovery or reporting
         scheme is incorporated into this subroutine.

Literature_References

     None.

Author_and_Institution

     N.J. Bachman       (JPL)
     J. Diaz del Rio    (ODC Space)
     W.M. Owen          (JPL)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 05-JUL-2021 (JDR)

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Added complete
        code example based on existing example.

    SPICELIB Version 1.0.2, 22-APR-2010 (NJB)

        Header correction: assertions that the output
        can overwrite the input have been removed.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WMO)
Fri Dec 31 18:37:05 2021