Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
vdotg

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     VDOTG ( Vector dot product, general dimension )

     DOUBLE PRECISION FUNCTION VDOTG ( V1, V2, NDIM )

Abstract

     Compute the dot product of two vectors of arbitrary dimension.

Required_Reading

     None.

Keywords

     VECTOR

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION   V1  ( * )
     DOUBLE PRECISION   V2  ( * )
     INTEGER            NDIM

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     V1         I   First vector in the dot product.
     V2         I   Second vector in the dot product.
     NDIM       I   Dimension of V1 and V2.

     The function returns the value of the dot product of V1 and V2.

Detailed_Input

     V1,
     V2       are two arbitrary double precision n-dimensional
              vectors.

     NDIM     is the dimension of V1 and V2.

Detailed_Output

     The function returns the value of the dot product (inner product)
     of V1 and V2:

        < V1, V2 >

Parameters

     None.

Exceptions

     Error free.

Files

     None.

Particulars

     VDOTG calculates the dot product of V1 and V2 by a simple
     application of the definition:

                   NDIM
                 .------
                  \
        VDOTG  =   )  V1(I) * V2(I)
                  /
                 '------
                    I=1

     No error checking is performed to prevent or recover from numeric
     overflow.

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Suppose that you have a set of double precision n-dimensional
        vectors. Check if they are orthogonal to the Z-axis in
        n-dimensional space.


        Example code begins here.


              PROGRAM VDOTG_EX1
              IMPLICIT NONE

        C
        C     SPICELIB functions.
        C
              DOUBLE PRECISION      VDOTG

        C
        C     Local parameters.
        C
              INTEGER               NDIM
              PARAMETER           ( NDIM   = 4 )

              INTEGER               SETSIZ
              PARAMETER           ( SETSIZ = 5 )

        C
        C     Local variables.
        C
              DOUBLE PRECISION      V1   ( NDIM, SETSIZ )
              DOUBLE PRECISION      Z    ( NDIM         )

              INTEGER               I
              INTEGER               J

        C
        C     Define the vector set.
        C
              DATA                  V1  / 1.D0,  0.D0,  0.D0, 0.D0,
             .                            0.D0,  1.D0,  0.D0, 3.D0,
             .                            0.D0,  0.D0, -6.D0, 0.D0,
             .                           10.D0,  0.D0, -1.D0, 0.D0,
             .                            0.D0,  0.D0,  0.D0, 1.D0  /

              DATA                  Z   / 0.D0,  0.D0,  1.D0, 0.D0  /

        C
        C     Check the orthogonality with respect to Z of each
        C     vector in V1.
        C
              DO I = 1, SETSIZ

                 WRITE(*,*)
                 WRITE(*,'(A,4F6.1)') 'Input vector (V1): ',
             .                         ( V1(J,I), J=1,NDIM )

                 IF ( VDOTG( V1(1,I), Z, NDIM ) .EQ. 0.D0 ) THEN

                    WRITE(*,'(A)') 'V1 and Z are orthogonal.'

                 ELSE

                    WRITE(*,'(A)') 'V1 and Z are NOT orthogonal.'

                 END IF

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


        Input vector (V1):    1.0   0.0   0.0   0.0
        V1 and Z are orthogonal.

        Input vector (V1):    0.0   1.0   0.0   3.0
        V1 and Z are orthogonal.

        Input vector (V1):    0.0   0.0  -6.0   0.0
        V1 and Z are NOT orthogonal.

        Input vector (V1):   10.0   0.0  -1.0   0.0
        V1 and Z are NOT orthogonal.

        Input vector (V1):    0.0   0.0   0.0   1.0
        V1 and Z are orthogonal.

Restrictions

     1)  The user is responsible for determining that the vectors V1
         and V2 are not so large as to cause numeric overflow. In
         most cases this will not present a problem.

Literature_References

     None.

Author_and_Institution

     J. Diaz del Rio    (ODC Space)
     W.M. Owen          (JPL)
     W.L. Taber         (JPL)

Version

    SPICELIB Version 1.1.0, 28-MAY-2021 (JDR)

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Added complete
        code example. Improved $Particulars section.

    SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)

        Comment section for permuted index source lines was added
        following the header.

    SPICELIB Version 1.0.0, 31-JAN-1990 (WMO)
Fri Dec 31 18:37:05 2021