| mxmt |
|
Table of contents
Procedure
MXMT ( Matrix times matrix transpose, 3x3 )
SUBROUTINE MXMT ( M1, M2, MOUT )
Abstract
Multiply a 3x3 matrix and the transpose of another 3x3 matrix.
Required_Reading
None.
Keywords
MATRIX
Declarations
IMPLICIT NONE
DOUBLE PRECISION M1 ( 3,3 )
DOUBLE PRECISION M2 ( 3,3 )
DOUBLE PRECISION MOUT ( 3,3 )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
M1 I 3x3 double precision matrix.
M2 I 3x3 double precision matrix.
MOUT O The product M1 times transpose of M2.
Detailed_Input
M1 is an arbitrary 3x3 double precision matrix.
M2 is an arbitrary 3x3 double precision matrix.
Typically, M2 will be a rotation matrix since
then its transpose is its inverse (but this is
NOT a requirement).
Detailed_Output
MOUT is a 3x3 double precision matrix. MOUT is the product
T
MOUT = M1 x M2
Parameters
None.
Exceptions
Error free.
Files
None.
Particulars
The code reflects precisely the following mathematical expression
For each value of the subscripts I and J from 1 to 3:
3
.-----
\
MOUT(I,J) = ) M1(I,K) * M2(J,K)
/
'-----
K=1
Note that the reversal of the K and J subscripts in the right-
hand matrix M2 is what makes MOUT the product of the TRANSPOSE of
M2 and not simply of M2 itself.
Examples
The numerical results shown for this example may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Given two 3x3 double precision matrices, multiply the first
matrix by the transpose of the second one.
Example code begins here.
PROGRAM MXMT_EX1
IMPLICIT NONE
C
C Local variables.
C
DOUBLE PRECISION M1 ( 3, 3 )
DOUBLE PRECISION M2 ( 3, 3 )
DOUBLE PRECISION MOUT ( 3, 3 )
INTEGER I
INTEGER J
C
C Define M1.
C
DATA M1 / 0.0D0, -1.0D0, 0.0D0,
. 1.0D0, 0.0D0, 0.0D0,
. 0.0D0, 0.0D0, 1.0D0 /
C
C Make M2 equal to M1.
C
CALL MEQU ( M1, M2 )
C
C Multiply M1 by the transpose of M2.
C
CALL MXMT ( M1, M2, MOUT )
WRITE(*,'(A)') 'M1:'
DO I=1, 3
WRITE(*,'(3F16.7)') ( M1(I,J), J=1,3 )
END DO
WRITE(*,*)
WRITE(*,'(A)') 'M2:'
DO I=1, 3
WRITE(*,'(3F16.7)') ( M2(I,J), J=1,3 )
END DO
WRITE(*,*)
WRITE(*,'(A)') 'M1 times transpose of M2:'
DO I=1, 3
WRITE(*,'(3F16.7)') ( MOUT(I,J), J=1,3 )
END DO
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
M1:
0.0000000 1.0000000 0.0000000
-1.0000000 0.0000000 0.0000000
0.0000000 0.0000000 1.0000000
M2:
0.0000000 1.0000000 0.0000000
-1.0000000 0.0000000 0.0000000
0.0000000 0.0000000 1.0000000
M1 times transpose of M2:
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
Restrictions
1) The user is responsible for checking the magnitudes of the
elements of M1 and M2 so that a floating point overflow does
not occur. (In the typical use where M1 and M2 are rotation
matrices, this not a risk at all.)
Literature_References
None.
Author_and_Institution
N.J. Bachman (JPL)
J. Diaz del Rio (ODC Space)
W.M. Owen (JPL)
W.L. Taber (JPL)
Version
SPICELIB Version 1.1.0, 06-JUL-2021 (JDR)
Added IMPLICIT NONE statement.
Edited the header to comply with NAIF standard. Added complete
code examples based on existing code fragments.
SPICELIB Version 1.0.2, 22-APR-2010 (NJB)
Header correction: assertions that the output
can overwrite the input have been removed.
SPICELIB Version 1.0.1, 10-MAR-1992 (WLT)
Comment section for permuted index source lines was added
following the header.
SPICELIB Version 1.0.0, 31-JAN-1990 (WMO)
|
Fri Dec 31 18:36:34 2021