mxmt |
Table of contents
ProcedureMXMT ( Matrix times matrix transpose, 3x3 ) SUBROUTINE MXMT ( M1, M2, MOUT ) AbstractMultiply a 3x3 matrix and the transpose of another 3x3 matrix. Required_ReadingNone. KeywordsMATRIX DeclarationsIMPLICIT NONE DOUBLE PRECISION M1 ( 3,3 ) DOUBLE PRECISION M2 ( 3,3 ) DOUBLE PRECISION MOUT ( 3,3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- M1 I 3x3 double precision matrix. M2 I 3x3 double precision matrix. MOUT O The product M1 times transpose of M2. Detailed_InputM1 is an arbitrary 3x3 double precision matrix. M2 is an arbitrary 3x3 double precision matrix. Typically, M2 will be a rotation matrix since then its transpose is its inverse (but this is NOT a requirement). Detailed_OutputMOUT is a 3x3 double precision matrix. MOUT is the product T MOUT = M1 x M2 ParametersNone. ExceptionsError free. FilesNone. ParticularsThe code reflects precisely the following mathematical expression For each value of the subscripts I and J from 1 to 3: 3 .----- \ MOUT(I,J) = ) M1(I,K) * M2(J,K) / '----- K=1 Note that the reversal of the K and J subscripts in the right- hand matrix M2 is what makes MOUT the product of the TRANSPOSE of M2 and not simply of M2 itself. ExamplesThe numerical results shown for this example may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Given two 3x3 double precision matrices, multiply the first matrix by the transpose of the second one. Example code begins here. PROGRAM MXMT_EX1 IMPLICIT NONE C C Local variables. C DOUBLE PRECISION M1 ( 3, 3 ) DOUBLE PRECISION M2 ( 3, 3 ) DOUBLE PRECISION MOUT ( 3, 3 ) INTEGER I INTEGER J C C Define M1. C DATA M1 / 0.0D0, -1.0D0, 0.0D0, . 1.0D0, 0.0D0, 0.0D0, . 0.0D0, 0.0D0, 1.0D0 / C C Make M2 equal to M1. C CALL MEQU ( M1, M2 ) C C Multiply M1 by the transpose of M2. C CALL MXMT ( M1, M2, MOUT ) WRITE(*,'(A)') 'M1:' DO I=1, 3 WRITE(*,'(3F16.7)') ( M1(I,J), J=1,3 ) END DO WRITE(*,*) WRITE(*,'(A)') 'M2:' DO I=1, 3 WRITE(*,'(3F16.7)') ( M2(I,J), J=1,3 ) END DO WRITE(*,*) WRITE(*,'(A)') 'M1 times transpose of M2:' DO I=1, 3 WRITE(*,'(3F16.7)') ( MOUT(I,J), J=1,3 ) END DO END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: M1: 0.0000000 1.0000000 0.0000000 -1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 M2: 0.0000000 1.0000000 0.0000000 -1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 M1 times transpose of M2: 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 Restrictions1) The user is responsible for checking the magnitudes of the elements of M1 and M2 so that a floating point overflow does not occur. (In the typical use where M1 and M2 are rotation matrices, this not a risk at all.) Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) W.M. Owen (JPL) W.L. Taber (JPL) VersionSPICELIB Version 1.1.0, 06-JUL-2021 (JDR) Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. Added complete code examples based on existing code fragments. SPICELIB Version 1.0.2, 22-APR-2010 (NJB) Header correction: assertions that the output can overwrite the input have been removed. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 31-JAN-1990 (WMO) |
Fri Dec 31 18:36:34 2021