Index of Functions: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 
Index Page
invort

Table of contents
Procedure
Abstract
Required_Reading
Keywords
Declarations
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version

Procedure

     INVORT ( Invert nearly orthogonal matrices )

     SUBROUTINE INVORT ( M, MIT )

Abstract

     Construct the inverse of a 3x3 matrix with orthogonal columns and
     non-zero column norms using a numerically stable algorithm. The
     rows of the output matrix are the columns of the input matrix
     divided by the length squared of the corresponding columns.

Required_Reading

     None.

Keywords

     MATRIX

Declarations

     IMPLICIT NONE

     DOUBLE PRECISION      M   ( 3, 3 )
     DOUBLE PRECISION      MIT ( 3, 3 )

Brief_I/O

     VARIABLE  I/O  DESCRIPTION
     --------  ---  --------------------------------------------------
     M          I   A 3x3 matrix.
     MIT        O   M after transposition and scaling of rows.

Detailed_Input

     M        is a 3x3 matrix.

Detailed_Output

     MIT      is the matrix obtained by transposing M and dividing
              the rows by squares of their norms.

Parameters

     None.

Exceptions

     1)  If any of the columns of M have zero length, the error
         SPICE(ZEROLENGTHCOLUMN) is signaled.

     2)  If any column is too short to allow computation of the
         reciprocal of its length without causing a floating
         point overflow, the error SPICE(COLUMNTOOSMALL) is signaled.

Files

     None.

Particulars

     Suppose that M is the matrix

            .-                      -.
            |   A*u    B*v     C*w   |
            |      1      1       1  |
            |                        |
            |   A*u    B*v     C*w   |
            |      2      2       2  |
            |                        |
            |   A*u    B*v     C*w   |
            |      3      3       3  |
            `-                      -'

     where the vectors (u , u , u ),  (v , v , v ),  and (w , w , w )
                         1   2   3      1   2   3          1   2   3
     are unit vectors. This routine produces the matrix:


            .-                      -.
            |   a*u    a*u     a*u   |
            |      1      2       3  |
            |                        |
            |   b*v    b*v     b*v   |
            |      1      2       3  |
            |                        |
            |   c*w    c*w     c*w   |
            |      1      2       3  |
            `-                      -'

     where a = 1/A, b = 1/B, and c = 1/C.

Examples

     The numerical results shown for this example may differ across
     platforms. The results depend on the SPICE kernels used as
     input, the compiler and supporting libraries, and the machine
     specific arithmetic implementation.

     1) Given a double precision 3x3 matrix with mutually orthogonal
        rows of arbitrary length, compute its inverse. Check that the
        original matrix times the computed inverse produces the
        identity matrix.

        Example code begins here.


              PROGRAM INVORT_EX1
              IMPLICIT NONE

        C
        C     Local variables.
        C
              DOUBLE PRECISION      IMAT ( 3, 3 )
              DOUBLE PRECISION      M    ( 3, 3 )
              DOUBLE PRECISION      MOUT ( 3, 3 )

              INTEGER               I
              INTEGER               J

        C
        C     Define a matrix to invert.
        C
              DATA                  M  /  0.D0,  0.5D0, 0.D0,
             .                           -1.D0,  0.D0,  0.D0,
             .                            0.D0,  0.D0,  1.D0 /

              WRITE(*,*) 'Original Matrix:'
              DO I=1, 3

                 WRITE(*,'(3F16.7)') ( M(I,J), J=1,3 )

              END DO
        C
        C     Invert the matrix, then output.
        C
              CALL INVORT ( M, MOUT )

              WRITE(*,*) ' '
              WRITE(*,*) 'Inverse Matrix:'
              DO I=1, 3

                 WRITE(*,'(3F16.7)') ( MOUT(I,J), J=1,3 )

              END DO

        C
        C     Check the M times MOUT produces the identity matrix.
        C
              CALL MXM ( M, MOUT, IMAT )

              WRITE(*,*) ' '
              WRITE(*,*) 'Original times inverse:'
              DO I=1, 3

                 WRITE(*,'(3F16.7)') ( IMAT(I,J), J=1,3 )

              END DO

              END


        When this program was executed on a Mac/Intel/gfortran/64-bit
        platform, the output was:


         Original Matrix:
               0.0000000      -1.0000000       0.0000000
               0.5000000       0.0000000       0.0000000
               0.0000000       0.0000000       1.0000000

         Inverse Matrix:
               0.0000000       2.0000000       0.0000000
              -1.0000000       0.0000000       0.0000000
               0.0000000       0.0000000       1.0000000

         Original times inverse:
               1.0000000       0.0000000       0.0000000
               0.0000000       1.0000000       0.0000000
               0.0000000       0.0000000       1.0000000

Restrictions

     None.

Literature_References

     None.

Author_and_Institution

     N.J. Bachman       (JPL)
     J. Diaz del Rio    (ODC Space)
     W.L. Taber         (JPL)
     E.D. Wright        (JPL)

Version

    SPICELIB Version 1.2.0, 26-OCT-2021 (JDR)

        Added IMPLICIT NONE statement.

        Edited the header to comply with NAIF standard. Fixed I/O type
        of argument MIT in $Brief_I/O table. Extended $Abstract
        section.

        Added complete code example to $Examples section.

    SPICELIB Version 1.1.1, 14-NOV-2013 (EDW)

        Edit to $Abstract. Eliminated unneeded $Revisions section.

    SPICELIB Version 1.1.0, 02-SEP-2005 (NJB)

        Updated to remove non-standard use of duplicate arguments
        in VSCL call.

    SPICELIB Version 1.0.0, 02-JAN-2002 (WLT)
Fri Dec 31 18:36:28 2021