| ident |
|
Table of contents
Procedure
IDENT ( Return the 3x3 identity matrix )
SUBROUTINE IDENT ( MATRIX )
Abstract
Return the 3x3 identity matrix.
Required_Reading
None.
Keywords
MATRIX
Declarations
IMPLICIT NONE
DOUBLE PRECISION MATRIX ( 3, 3 )
Brief_I/O
VARIABLE I/O DESCRIPTION
-------- --- --------------------------------------------------
MATRIX O The 3x3 identity matrix.
Detailed_Input
None.
Detailed_Output
MATRIX is the 3x3 Identity matrix. That MATRIX is
the following
.- -.
| 1.0D0 0.0D0 0.0D0 |
| 0.0D0 1.0D0 0.0D0 |
| 0.0D0 0.0D0 1.0D0 |
`- -'
Parameters
None.
Exceptions
Error free.
Files
None.
Particulars
This is a utility routine for obtaining the 3x3 identity matrix
so that you may avoid having to write the loop or assignments
needed to get the matrix.
Examples
The numerical results shown for this example may differ across
platforms. The results depend on the SPICE kernels used as
input, the compiler and supporting libraries, and the machine
specific arithmetic implementation.
1) Define a 3x3 matrix and compute its inverse using the SPICELIB
routine INVERT. Verify the accuracy of the computed inverse
using the mathematical identity
-1
M x M - I = 0
where I is the 3x3 identity matrix.
Example code begins here.
PROGRAM IDENT_EX1
IMPLICIT NONE
C
C Local variables.
C
DOUBLE PRECISION IDMAT ( 3, 3 )
DOUBLE PRECISION IMAT ( 3, 3 )
DOUBLE PRECISION M ( 3, 3 )
DOUBLE PRECISION MOUT ( 3, 3 )
DOUBLE PRECISION MZERO ( 3, 3 )
INTEGER I
INTEGER J
C
C Define a matrix to invert.
C
DATA M / 0.D0, 0.5D0, 0.D0,
. -1.D0, 0.D0, 0.D0,
. 0.D0, 0.D0, 1.D0 /
WRITE(*,*) 'Original Matrix:'
DO I=1, 3
WRITE(*,'(3F16.7)') ( M(I,J), J=1,3 )
END DO
C
C Invert the matrix, then output.
C
CALL INVERT ( M, MOUT )
WRITE(*,*) ' '
WRITE(*,*) 'Inverse Matrix:'
DO I=1, 3
WRITE(*,'(3F16.7)') ( MOUT(I,J), J=1,3 )
END DO
C
C Check the M times MOUT produces the identity matrix.
C
CALL IDENT ( IDMAT )
CALL MXM ( M, MOUT, IMAT )
CALL VSUBG ( IMAT, IDMAT, 9, MZERO )
WRITE(*,*) ' '
WRITE(*,*) 'Original times inverse minus identity:'
DO I=1, 3
WRITE(*,'(3F16.7)') ( MZERO(I,J), J=1,3 )
END DO
END
When this program was executed on a Mac/Intel/gfortran/64-bit
platform, the output was:
Original Matrix:
0.0000000 -1.0000000 0.0000000
0.5000000 0.0000000 0.0000000
0.0000000 0.0000000 1.0000000
Inverse Matrix:
0.0000000 2.0000000 -0.0000000
-1.0000000 0.0000000 -0.0000000
0.0000000 -0.0000000 1.0000000
Original times inverse minus identity:
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
Restrictions
None.
Literature_References
None.
Author_and_Institution
J. Diaz del Rio (ODC Space)
W.L. Taber (JPL)
Version
SPICELIB Version 1.0.1, 03-JUN-2021 (JDR)
Edited the header to comply with NAIF standard. Added complete
code example.
SPICELIB Version 1.0.0, 05-FEB-1996 (WLT)
|
Fri Dec 31 18:36:26 2021