edpnt |
Table of contents
ProcedureEDPNT ( Ellipsoid point ) SUBROUTINE EDPNT ( P, A, B, C, EP ) AbstractScale a point so that it lies on the surface of a specified triaxial ellipsoid that is centered at the origin and aligned with the Cartesian coordinate axes. Required_ReadingNone. KeywordsELLIPSOID GEOMETRY MATH DeclarationsIMPLICIT NONE DOUBLE PRECISION P ( 3 ) DOUBLE PRECISION A DOUBLE PRECISION B DOUBLE PRECISION C DOUBLE PRECISION EP ( 3 ) Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- P I A point in three-dimensional space. A I Semi-axis length in the X direction. B I Semi-axis length in the Y direction. C I Semi-axis length in the Z direction. EP O Point on ellipsoid. Detailed_InputP is a non-zero point in three-dimensional space. A, B, C are, respectively, the semi-axis lengths of a triaxial ellipsoid in the X, Y, and Z directions. The axes of the ellipsoid are aligned with the axes of the Cartesian coordinate system. Detailed_OutputEP is the result of scaling the input point P so that it lies on the surface of the triaxial ellipsoid defined by the input semi-axis lengths. ParametersNone. Exceptions1) If any of the target ellipsoid's semi-axis lengths is non-positive, the error SPICE(INVALIDAXES) is signaled. 2) If P is the zero vector, the error SPICE(ZEROVECTOR) is signaled. 3) If the level surface parameter of the input point underflows, the error SPICE(POINTTOOSMALL) is signaled. FilesNone. ParticularsThis routine efficiently computes the ellipsoid surface point corresponding to a specified ray emanating from the origin. Practical examples of this computation occur in the SPICELIB routines LATSRF and SRFREC. ExamplesThe numerical results shown for this example may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Find the surface intercept point on an ellipsoid having radii ( 3, 2, 1 ) of the ray emanating from the origin and having direction vector ( 1, 1, 1 ) Example code begins here. PROGRAM EDPNT_EX1 IMPLICIT NONE CHARACTER*(*) FMT1 PARAMETER ( FMT1 = '(A,F18.14)' ) CHARACTER*(*) FMT3 PARAMETER ( FMT3 = '(A,3F18.14)' ) DOUBLE PRECISION A DOUBLE PRECISION B DOUBLE PRECISION C DOUBLE PRECISION V ( 3 ) DOUBLE PRECISION EP ( 3 ) DOUBLE PRECISION LEVEL A = 3.D0 B = 2.D0 C = 1.D0 CALL VPACK ( 1.D0, 1.D0, 1.D0, V ) CALL EDPNT ( V, A, B, C, EP ) WRITE (*,FMT3) 'EP = ', EP C C Verify that EP is on the ellipsoid. C LEVEL = (EP(1)/A)**2 + (EP(2)/B)**2 + (EP(3)/C)**2 WRITE (*,FMT1) 'LEVEL = ', LEVEL END When this program was executed on a Mac/Intel/gfortran/64-bit platform, the output was: EP = 0.85714285714286 0.85714285714286 0.85714285714286 LEVEL = 1.00000000000000 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) E.D. Wright (JPL) VersionSPICELIB Version 2.0.1, 09-JUL-2020 (JDR) Minor edits to the header and code example. SPICELIB Version 2.0.0, 19-APR-2016 (NJB) (EDW) |
Fri Dec 31 18:36:17 2021