dacosh |
Table of contents
ProcedureDACOSH ( Double precision arc hyperbolic cosine ) DOUBLE PRECISION FUNCTION DACOSH ( X ) AbstractReturn the inverse hyperbolic cosine of a double precision argument. Required_ReadingNone. KeywordsHYPERBOLIC MATH DeclarationsIMPLICIT NONE DOUBLE PRECISION X Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- X I Number whose inverse hyperbolic cosine is desired. The function returns the inverse hyperbolic cosine of a double precision number. Detailed_InputX is any double precision number greater than or equal to 1. Detailed_OutputThe function returns the inverse hyperbolic cosine of the double precision number X. ParametersNone. Exceptions1) If X is less than 1.0D0, the error SPICE(INVALIDARGUMENT) is signaled. FilesNone. ParticularsThis function simply implements the definition of the inverse hyperbolic cosine as follows: DACOSH = DLOG (X + DSQRT (X*X-1.D0)) If the input value is not valid, an error is signaled. ExamplesThe following table gives a few values for X and the resulting value of DACOSH. X DACOSH(X) ---------------------------------------------- 1.000000000000000 0.0000000000000000E+00 10.00000000000000 2.993222846126381 100.0000000000000 5.298292365610485 1000.000000000000 7.600902209541989 Restrictions1) The value of the input variable X must be greater than or equal to 1.0d0. Literature_References[1] W.H. Beyer, "CRC Standard Mathematical Tables," CRC Press, 1987. Author_and_InstitutionJ. Diaz del Rio (ODC Space) H.A. Neilan (JPL) W.M. Owen (JPL) W.L. Taber (JPL) VersionSPICELIB Version 1.2.0, 17-JUN-2021 (JDR) Added IMPLICIT NONE statement. Edited the header to comply with NAIF standard. SPICELIB Version 1.1.0, 17-MAY-1994 (HAN) Set the default function value to either 0, 0.0D0, .FALSE., or blank depending on the type of the function. SPICELIB Version 1.0.1, 10-MAR-1992 (WLT) Comment section for permuted index source lines was added following the header. SPICELIB Version 1.0.0, 31-JAN-1990 (WMO) |
Fri Dec 31 18:36:06 2021