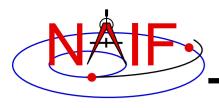


Navigation and Ancillary Information Facility

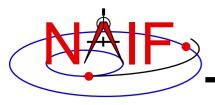
Digital Shape Kernel Subsystem (DSK)


April 2023

Topics

Navigation and Ancillary Information Facility

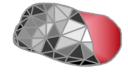
- DSK subsystem overview
- DSK shape representations
- N67 version of DSK subsystem
- DSK APIs and graphical depictions
- DSK API example
- DSK utility programs
- DSK concepts
- Writing and using DSK files



DSK Subsystem Overview

Navigation and Ancillary Information Facility

The DSK subsystem

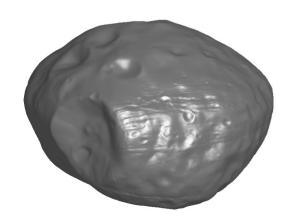

- enables SPICE-based applications to conveniently make use of high fidelity surface shape (topographic) data in geometry computations
- serves as a format for transmission and archival of surface shape data
- consists of SPICE software, DSK file format specifications, and documentation

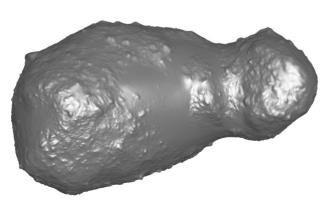
DSK Shape Representations

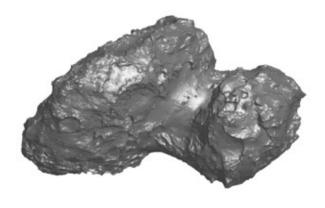
Navigation and Ancillary Information Facility

- The DSK subsystem handles two representations of shape data
 - Tessellated plate model (Type 2)

Digital elevation model (development not yet finished) (Type 4)

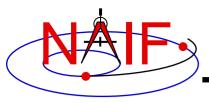




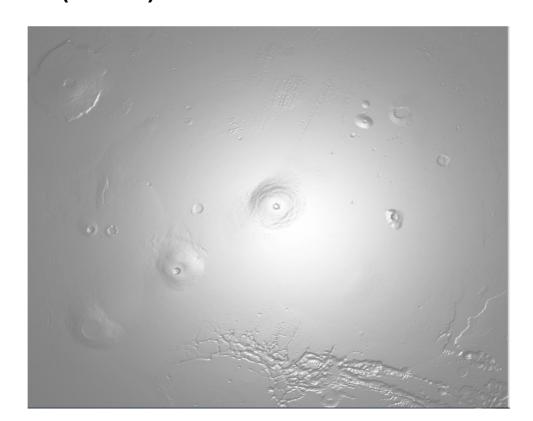

Tessellated Plate Model – Type 2

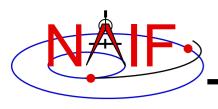
Navigation and Ancillary Information Facility

- The surface of the object is represented as a collection of triangular plates
- More flexible than digital elevation model: any arbitrary 3-D surface can be modeled
 - Surface could be a complicated shape with multiple surface points having the same latitude and longitude
 - » Examples: "dumbbell"-shaped asteroid, caves, arches
- Less efficient than digital elevation model (DSK Type 4) of similar resolution in terms of storage and computational speed



Phobos

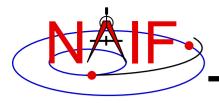

Itokowa



Digital Elevation Model – Type 4

Navigation and Ancillary Information Facility

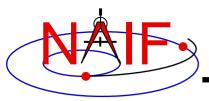
- Maps longitude/latitude to "elevation"
 - Elevation of a surface point can be defined as distance from the origin of a body-fixed reference frame or height above a reference ellipsoid
- Example: rendering of a piece of DSK data created from MGS laser altimeter (MOLA) Mars DEM



N67 Toolkit with DSK

Navigation and Ancillary Information Facility

- Supports only the tessellated plate model data type (Type 2 DSK)
- Support for Digital Elevation Model (DEM) (Type 4 DSK) will be added in a future Toolkit version



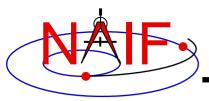
Some DSK Features

Navigation and Ancillary Information Facility

- Supports multi-segment, multi-file DSK data sets
 - Up to 5000 DSK files can be loaded simultaneously
 - Up to 10,000 DSK segments can be loaded simultaneously
- Supports run-time data translation: big-endian DSK files can be read on little-endian platforms, and vice versa

 Pre-DSK era SPICE Toolkit geometry APIs will support DSK shape data, where applicable

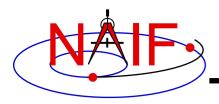
APIs Available in N66 Toolkits -1


Navigation and Ancillary Information Facility

Kernel load/unload/info:

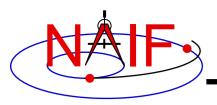
- FURNSH, UNLOAD, KCLEAR, KTOTAL, KINFO, KDATA

Geometry:


- Ray-surface intercept: SINCPT, DSKXV, DSKXSI
- Sub-observer point: SUBPNT
- Sub-solar point: SUBSLR
- Illumination angles at surface point: ILLUMF, ILLUMG, ILUMIN
- Longitude-latitude pairs to surface points: LATSRF
- Find occultation state at a given time: OCCULT
- Find occultation or transit of point target behind/across DSK shape: GFOCLT
- Generate limb points: LIMBPT
- Generate terminator points: TERMPT
- Compute outward normal vector at surface point: SRFNRM

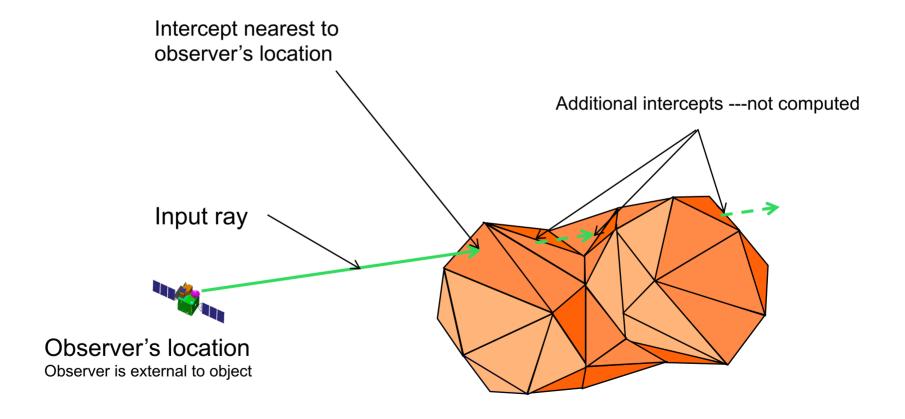
APIs Available in N66 Toolkits -2

Navigation and Ancillary Information Facility


- Low-level access:
 - DLA segment traversal: DLABFS, DLABBS, DLAFNA, DLAFPA
 - Fetch type 2 counts/plates/vertices/normals: DSKZ02, DSKP02, DSKV02, DSKN02
 - Fetch all type 2 data structure contents: DSKI02, DSKD02
 - Fetch DSK segment descriptor: DSKGD
- Plate utilities:
 - PLTVOL, PLTAR, PLTEXP, PLTNP, PLTNRM
- Create DSK files:
 - DSKOPN, DSKW02, DSKCLS, DSKMI2, DSKRB2
- Summary routines:
 - DSKOBJ, DSKSRF
- Surface name-code translation:
 - SRFS2C, SRFSCC, SRFC2S, SRFCSS

Graphic Depictions

Navigation and Ancillary Information Facility


 In the next several charts we provide graphic depictions of the high-level APIs that should be of interest to many users

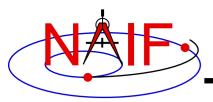
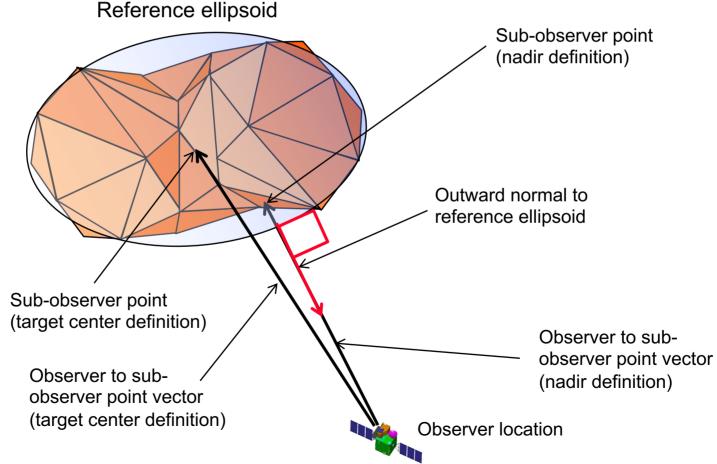


Plate Model Surface Intercept

Navigation and Ancillary Information Facility

API: SINCPT



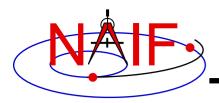
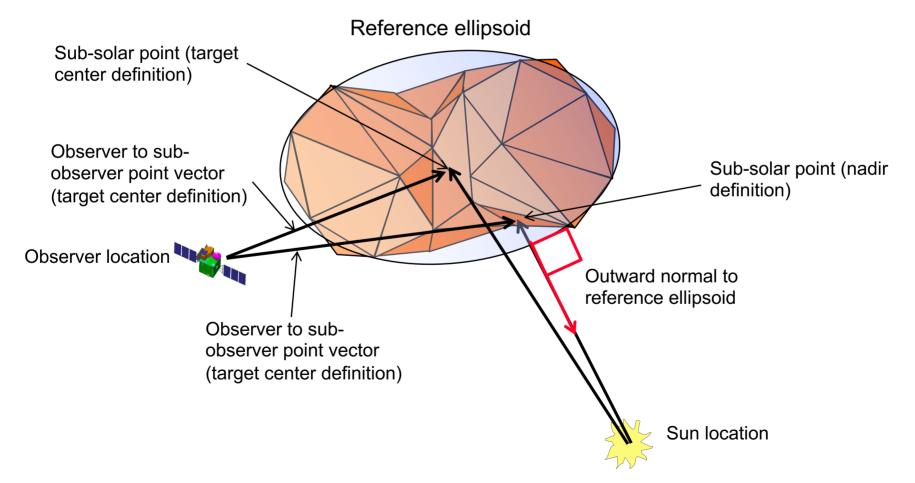


Plate Model Sub-observer Point

Navigation and Ancillary Information Facility

API: SUBPNT



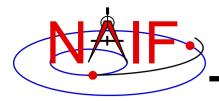


Plate Model Sub-solar Point

Navigation and Ancillary Information Facility

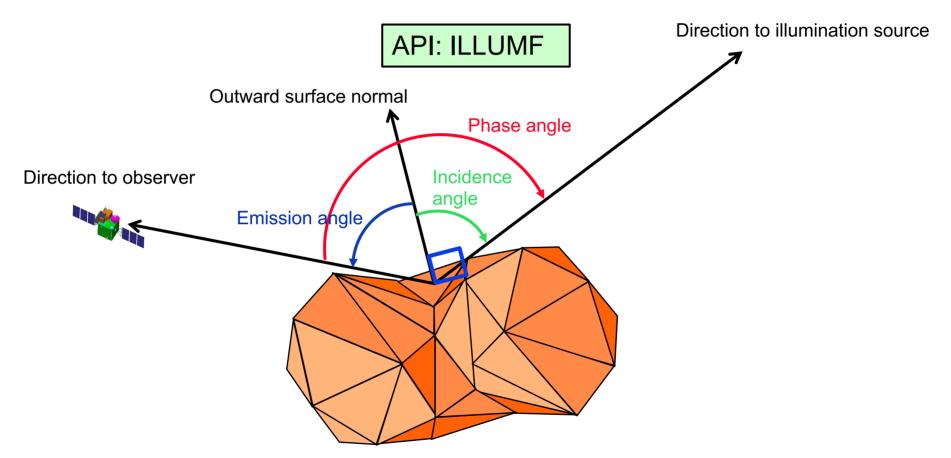
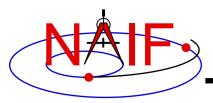

API: SUBSLR

Plate model Illumination Angles


Navigation and Ancillary Information Facility

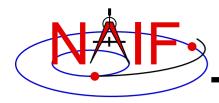
Also returned:

- target epoch (corrected for light time),
- observer visibility flag,illumination source visibility flag

,

Plate Model Surface Point Grid

Navigation and Ancillary Information Facility


API: LATSRF

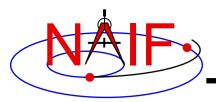
Ray emanating from sphere point, pointing toward center of bodyfixed, body-centered reference frame

Point on bounding sphere, specified by planetocentric longitude and latitude, and by radius of exterior bounding sphere. This grid contains 9 such points.

Exterior bounding sphere for target object

Surface intercept point corresponding to point on bounding sphere: planetocentric longitude and latitude of intercept match those of the sphere point. An intercept is computed for each input sphere point.

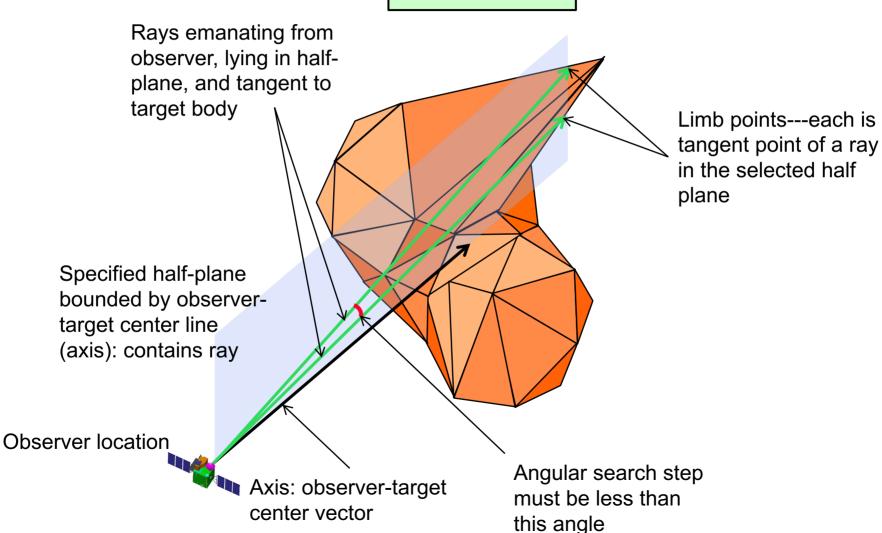
Plate Model Limb-1


Navigation and Ancillary Information Facility

API: LIMBPT

Ray emanating from Specified half-plane observer and tangent to Limb point---lies on a bounded by observertarget body tangent ray in the target center line selected half-plane (for (axis): contains ray some shapes, multiple tangents will exist for a given axis and half-plane) Limb point angle relative to axis **Observer location**

Digital Shape Kernel


Axis: observer-target center vector

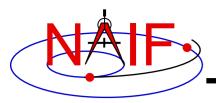
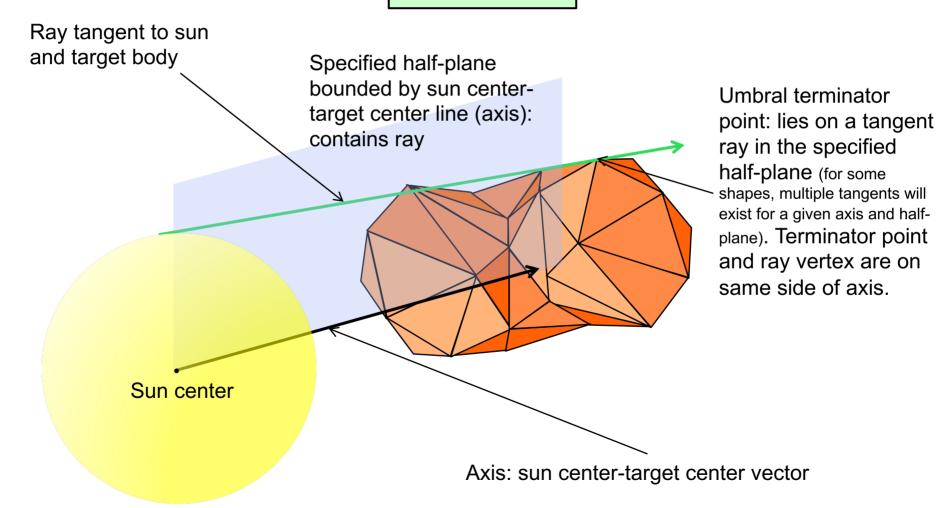


Plate Model Limb-2

Navigation and Ancillary Information Facility

API: LIMBPT



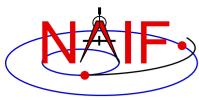
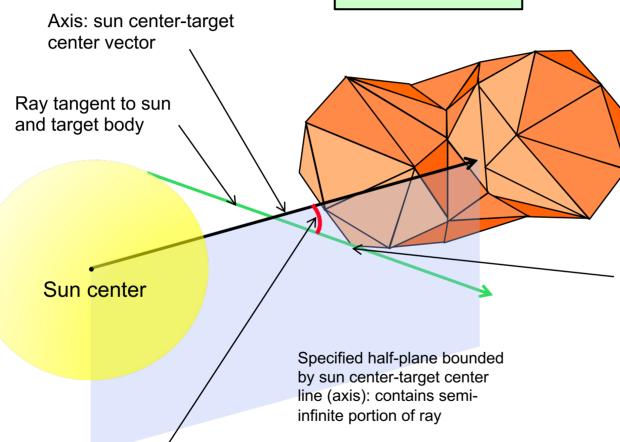


Plate Model Terminator-Umbral

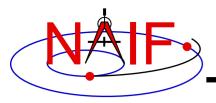
Navigation and Ancillary Information Facility

API: TERMPT



>Plate Model Terminator-Penumbral

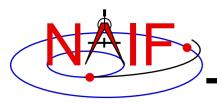
Navigation and Ancillary Information Facility



Terminator tangent ray angle

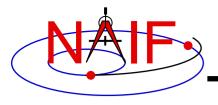
relative to axis

Penumbral terminator point: lies on a tangent ray in the specified half-plane (for some shapes, multiple tangents will exist for a given axis and half-plane). Terminator point lies in half-space on opposite side of axis from ray's vertex.


Example of API Using DSK - 1

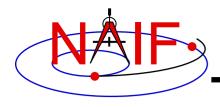
Navigation and Ancillary Information Facility

- Find ray intercept point on target surface:
 - CALL SINCPT (METHOD, TARGET, ET, FIXREF, ABCORR, OBSRVR, DREF, DVEC, SPOINT, TRGEPC, SRFVEC, FOUND)


- SINCPT is a high-level SPICE API.
- The input string argument METHOD indicates the surface model to use.
 - » To model the target body shape using an ellipsoid, set METHOD to 'ellipsoid'
 - » To model the target body shape using DSK data, set METHOD to one of the forms
 - 'DSK/UNPRIORITIZED'
 - If all DSK segments for the body designated by TARGET are applicable
 - 'DSK/UNPRIORITIZED/SURFACES = <surface name or ID 1>, ...'
 - If only DSK segments for the specified surfaces associated with the body designated by TARGET are applicable
 - » For the DSK case, the keyword UNPRIORITIZED is currently required. This keyword indicates that no applicable segment can mask another.

Example of API Using DSK - 2

Navigation and Ancillary Information Facility

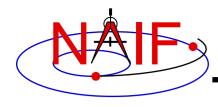

- » Other inputs: target body name, epoch, body-fixed reference frame, aberration correction, observer name, reference frame for direction vector, direction vector.
- » Outputs: ray-surface intercept in Cartesian coordinates, expressed in the body-fixed frame associated with the target--evaluated at the optionally light-time corrected epoch TRGEPC, TRGEPC itself, observer-to-intercept vector expressed in body-fixed frame, and found flag indicating whether intercept exists.

DSK Utility Programs

Navigation and Ancillary Information Facility

- Create DSK files: MKDSK
 - Creates a DSK file containing a single type 2 segment
- Export DSK data to text format files: DSKEXP
 - Writes data from Type 2 DSK segments to one or more text files
 - Supports simple output formats such as "obj"
- Summarize DSK files: DSKBRIEF
- Modify DSK segment attributes: DSKMOD
- Merge DSK files: DLACAT
 - Concatenates segments from multiple DSK files into a single DSK file
- Transform binary architecture of DSK file: TOXFR, TOBIN, BINGO (BINGO not part of standard SPICE Toolkit)
- Read/write comment area: COMMNT
- DSKMOD, DLACAT, and BINGO are provided on the NAIF Web site (https://naif.jpl.nasa.gov/naif/utilities.html)

DSK Concepts-1


Navigation and Ancillary Information Facility

Surface

- "Surface" is a second identifier, in addition to the central body
 - » A "surface" has a name and an integer ID code
 - · Surfaces occupy a name space distinct from that of bodies
 - · APIs are provided for surface name/ID conversion
- Used to distinguish different versions of data for a given body
 - » Allows use of different versions without loading and unloading kernels
 - High-frequency kernel loading and unloading is too inefficient for DSK applications

Data class

- Data class is a "hook" to differentiate kinds of data for different applications
 - » Distinct from concept of "data type"
- Existing classes indicate geometric characteristics of surface data
 - » Class 1: shape is single-valued function of domain coordinates. Example, for latitudinal coordinates:
 - Every ray emanating from the origin of the body-fixed reference frame associated with the body passes through the surface once
 - Such surfaces cannot have features such as cliffs or caves
 - DEMs can represent class 1 surfaces
 - » Class 2: arbitrary shape
 - Not required to be convex, closed, or connected
 - Plate models are the only DSK data type that can be used for class 2 surfaces

DSK Concepts-2

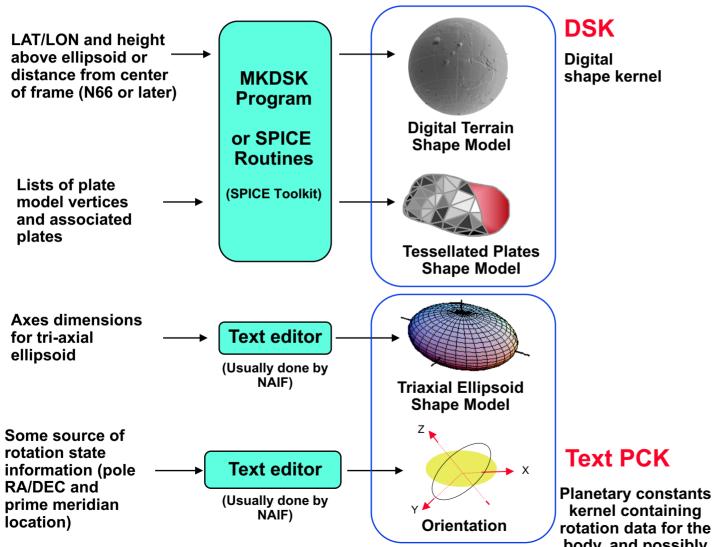
Navigation and Ancillary Information Facility

Kernel priority

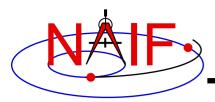
- Unlike SPK, CK, and binary PCK files, the concept of segment "priority" does not apply to all DSK applications
 - » Not applicable to data sets including segments of class 2
 - Concept simply doesn't make sense when multiple heights can correspond to a single longitude/latitude coordinate pair
 - » Can apply to data sets containing only class 1 segments

Coordinate systems

- Associated with segments
 - » Segment coverage is described in terms of a coordinate system associated with that segment
- Can be any of
 - » Planetocentric (latitudinal)
 - » Planetodetic
 - » Cartesian

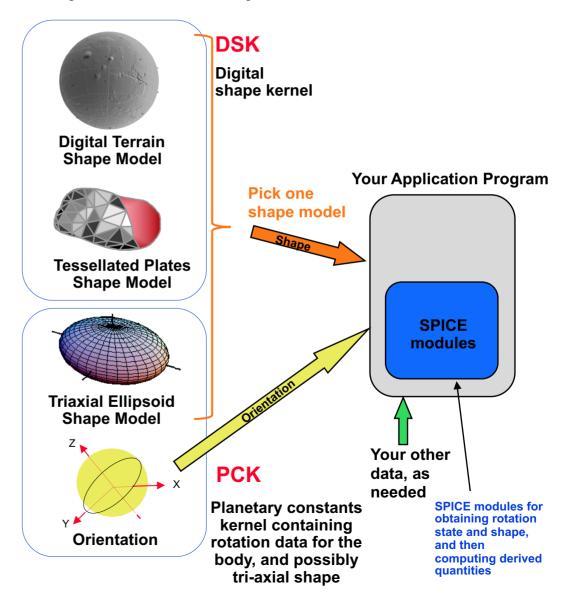

Segment coverage

- The spatial "coverage" of a segment is a region of space within which the segment provides valid surface data
 - » Characterized by three coordinate ranges
 - · For example: min, max longitude; min, max latitude; min, max radius
 - » "Padding" data may be provided outside of a segment's coverage region



Writing Shape and Orientation Kernels

Navigation and Ancillary Information Facility



kernel containing rotation data for the body, and possibly tri-axial shape

Using Shape and Orientation Kernels

Navigation and Ancillary Information Facility

