recgeo_c |
Table of contents
Procedurerecgeo_c ( Rectangular to geodetic ) void recgeo_c ( ConstSpiceDouble rectan[3], SpiceDouble re, SpiceDouble f, SpiceDouble * lon, SpiceDouble * lat, SpiceDouble * alt ) AbstractConvert from rectangular coordinates to geodetic coordinates. Required_ReadingNone. KeywordsCONVERSION COORDINATES Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- rectan I Rectangular coordinates of a point. re I Equatorial radius of the reference spheroid. f I Flattening coefficient. lon O Geodetic longitude of the point (radians). lat O Geodetic latitude of the point (radians). alt O Altitude of the point above reference spheroid. Detailed_Inputrectan are the rectangular coordinates of a point. `rectan' must be in the same units as `re'. re is the equatorial radius of a reference spheroid. This spheroid is a volume of revolution: its horizontal cross sections are circular. The shape of the spheroid is defined by an equatorial radius `re' and a polar radius `rp'. `re' must be in the same units as `rectan'. f is the flattening coefficient = (re-rp) / re, where `rp' is the polar radius of the spheroid. Detailed_Outputlon is the geodetic longitude of the input point. This is the angle between the prime meridian and the meridian containing `rectan'. The direction of increasing longitude is from the +X axis towards the +Y axis. `lon' is output in radians. The range of `lon' is [-pi, pi]. lat is the geodetic latitude of the input point. For a point P on the reference spheroid, this is the angle between the XY plane and the outward normal vector at P. For a point P not on the reference spheroid, the geodetic latitude is that of the closest point to P on the spheroid. `lat' is output in radians. The range of `lat' is [-pi/2, pi/2]. alt is the altitude of point above the reference spheroid. The units associated with `alt' are those associated with the inputs `rectan' and `re'. ParametersNone. Exceptions1) If the equatorial radius is non-positive, the error SPICE(VALUEOUTOFRANGE) is signaled by a routine in the call tree of this routine. 2) If the flattening coefficient is greater than or equal to one, the error SPICE(VALUEOUTOFRANGE) is signaled by a routine in the call tree of this routine. 3) For points inside the reference ellipsoid, the nearest point on the ellipsoid to `rectan' may not be unique, so latitude may not be well-defined. FilesNone. ParticularsGiven the body-fixed rectangular coordinates of a point, and the constants describing the reference spheroid, this routine returns the geodetic coordinates of the point. The body-fixed rectangular frame is that having the X-axis pass through the 0 degree latitude 0 degree longitude point. The Y-axis passes through the 0 degree latitude 90 degree longitude. The Z-axis passes through the 90 degree latitude point. For some bodies this coordinate system may not be a right-handed coordinate system. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Find the geodetic coordinates of the point having Earth rectangular coordinates: X (km) = -2541.748162 Y (km) = 4780.333036 Z (km) = 3360.428190 Use the PCK kernel below to load the required triaxial ellipsoidal shape model and orientation data for the Earth. pck00010.tpc Example code begins here. /. Program recgeo_ex1 ./ #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local variables ./ SpiceDouble alt; SpiceDouble f; SpiceDouble lat; SpiceDouble lon; SpiceDouble radii [3]; SpiceDouble re; SpiceDouble rectan [3]; SpiceDouble rp; SpiceInt n; /. Load a PCK file containing a triaxial ellipsoidal shape model and orientation data for the Earth. ./ furnsh_c ( "pck00010.tpc" ); /. Retrieve the triaxial radii of the Earth ./ bodvrd_c ( "EARTH", "RADII", 3, &n, radii ); /. Compute flattening coefficient. ./ re = radii[0]; rp = radii[2]; f = ( re - rp ) / re; /. Set a body-fixed position. ./ rectan[0] = -2541.748162; rectan[1] = 4780.333036; rectan[2] = 3360.428190; /. Do the conversion. ./ recgeo_c ( rectan, radii[0], f, &lon, &lat, &alt ); printf( "Rectangular coordinates in km (x, y, z)\n" ); printf( " %13.6f %13.6f %13.6f\n", rectan[0], rectan[1], rectan[2] ); printf( "Geodetic coordinates in deg and km (lon, lat, alt)\n" ); printf( " %13.6f %13.6f %13.6f\n", lon * dpr_c ( ), lat * dpr_c ( ), alt ); return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: Rectangular coordinates in km (x, y, z) -2541.748162 4780.333036 3360.428190 Geodetic coordinates in deg and km (lon, lat, alt) 118.000000 31.999957 0.001916 2) Create a table showing a variety of rectangular coordinates and the corresponding Earth geodetic coordinates. The values are computed using the equatorial radius of the Clark 66 spheroid and the Clark 66 flattening factor: radius: 6378.2064 flattening factor: 1./294.9787 Note: the values shown above may not be current or suitable for your application. Corresponding rectangular and geodetic coordinates are listed to three decimal places. Output angles are in degrees. Example code begins here. /. Program recgeo_ex2 ./ #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local parameters. ./ #define NREC 11 /. Local variables. ./ SpiceDouble alt; SpiceDouble clarkr; SpiceDouble clarkf; SpiceDouble lat; SpiceDouble lon; SpiceInt i; /. Define the input rectangular coordinates. ./ SpiceDouble rectan [NREC][3] = { { 0.0, 0.0, 0.0 }, { 6378.2064, 0.0, 0.0 }, { 0.0, 6378.2064, 0.0 }, { 0.0, 0.0, 6378.2064}, {-6378.2064, 0.0, 0.0 }, { 0.0, -6378.2064, 0.0 }, { 0.0, 0.0, -6378.2064}, { 6378.2064, 6378.2064, 0.0 }, { 6378.2064, 0.0, 6378.2064}, { 0.0, 6378.2064, 6378.2064}, { 6378.2064, 6378.2064, 6378.2064} }; /. Using the equatorial radius of the Clark66 spheroid (clarkr = 6378.2064 km) and the Clark 66 flattening factor (clarkf = 1.0 / 294.9787 ) convert from body fixed rectangular coordinates. ./ clarkr = 6378.2064; clarkf = 1.0 / 294.9787; /. Print the banner. ./ printf( " rectan[0] rectan[1] rectan[2] lon lat " " alt\n" ); printf( " --------- --------- --------- ------- ------- " " ---------\n" ); /. Do the conversion. Output angles in degrees. ./ for ( i = 0; i < NREC; i++ ) { recgeo_c ( rectan[i], clarkr, clarkf, &lon, &lat, &alt ); printf( "%10.3f %10.3f %10.3f", rectan[i][0], rectan[i][1], rectan[i][2] ); printf( "%9.3f %8.3f %10.3f\n", lon * dpr_c ( ), lat * dpr_c ( ), alt ); } return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: rectan[0] rectan[1] rectan[2] lon lat alt --------- --------- --------- ------- ------- --------- 0.000 0.000 0.000 0.000 90.000 -6356.584 6378.206 0.000 0.000 0.000 0.000 0.000 0.000 6378.206 0.000 90.000 0.000 0.000 0.000 0.000 6378.206 0.000 90.000 21.623 -6378.206 0.000 0.000 180.000 0.000 0.000 0.000 -6378.206 0.000 -90.000 0.000 0.000 0.000 0.000 -6378.206 0.000 -90.000 21.623 6378.206 6378.206 0.000 45.000 0.000 2641.940 6378.206 0.000 6378.206 0.000 45.137 2652.768 0.000 6378.206 6378.206 90.000 45.137 2652.768 6378.206 6378.206 6378.206 45.000 35.370 4676.389 RestrictionsNone. Literature_References[1] R. Bate, D. Mueller, and J. White, "Fundamentals of Astrodynamics," Dover Publications Inc., 1971. Author_and_InstitutionC.H. Acton (JPL) N.J. Bachman (JPL) J. Diaz del Rio (ODC Space) B.V. Semenov (JPL) E.D. Wright (JPL) Version-CSPICE Version 1.2.4, 01-NOV-2021 (JDR) Edited the header to comply with NAIF standard. Added two complete code examples. -CSPICE Version 1.2.3, 26-JUL-2016 (BVS) Minor headers edits. -CSPICE Version 1.2.2, 02-JUL-2007 (NJB) In -Examples section of header, heading and description of right-hand table was updated to use correct names of columns. Term "bodyfixed" is now hyphenated. -CSPICE Version 1.2.1, 30-JUL-2003 (NJB) (CHA) Various header changes were made to improve clarity. Some minor header corrections were made. -CSPICE Version 1.2.0, 28-AUG-2001 (NJB) Removed tab characters from source file. Include interface macro definition file SpiceZim.h. -CSPICE Version 1.1.0, 21-OCT-1998 (NJB) Made input vector const. -CSPICE Version 1.0.0, 08-FEB-1998 (EDW) Index_Entriesrectangular to geodetic |
Fri Dec 31 18:41:11 2021