vzerog_c |
Table of contents
Procedurevzerog_c ( Is a vector the zero vector? -- general dim. ) SpiceBoolean vzerog_c ( ConstSpiceDouble * v, SpiceInt ndim ) AbstractIndicate whether an n-dimensional vector is the zero vector. Required_ReadingNone. KeywordsMATH VECTOR Brief_I/OVARIABLE I/O DESCRIPTION -------- --- -------------------------------------------------- v I Vector to be tested. ndim I Dimension of `v'. The function returns the value SPICETRUE if and only if `v' is the zero vector. Detailed_Inputv, ndim are, respectively, an n-dimensional vector and its dimension. Detailed_OutputThe function returns the value SPICETRUE if and only if `v' is the zero vector. ParametersNone. ExceptionsError free. 1) When `ndim' is non-positive, this function returns the value SPICEFALSE (A vector of non-positive dimension cannot be the zero vector.) FilesNone. ParticularsThis function has the same truth value as the logical expression ( vnormg_c ( v, ndim ) == 0. ) Replacing the above expression by vzerog_c ( v, ndim ); has several advantages: the latter expresses the test more clearly, looks better, and doesn't go through the work of scaling, squaring, taking a square root, and re-scaling (all of which vnormg_c must do) just to find out that a vector is non-zero. A related function is vzero_c, which accepts three-dimensional vectors. ExamplesThe numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation. 1) Given a set of n-dimensional vectors, check which ones are the zero vector. Example code begins here. /. Program vzerog_ex1 ./ #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local parameters. ./ #define NDIM 4 #define SETSIZ 2 /. Local variables. ./ SpiceInt i; /. Define the vector set. ./ SpiceDouble v [SETSIZ][NDIM] = { {0.0, 0.0, 0.0, 2.e-7}, {0.0, 0.0, 0.0, 0.0 } }; /. Check each n-dimensional vector within the set. ./ for ( i = 0; i < SETSIZ; i++ ) { /. Check if the i'th vector is the zero vector. ./ printf( "\n" ); printf( "Input vector: %10.7f %10.7f %10.7f %10.7f\n", v[i][0], v[i][1], v[i][2], v[i][3] ); if ( vzerog_c ( v[i], NDIM ) ) { printf( " The zero vector.\n" ); } else { printf( " Not all elements of the vector are zero.\n" ); } } return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: Input vector: 0.0000000 0.0000000 0.0000000 0.0000002 Not all elements of the vector are zero. Input vector: 0.0000000 0.0000000 0.0000000 0.0000000 The zero vector. 2) Define a unit quaternion and confirm that it is non-zero before converting it to a rotation matrix. Example code begins here. /. Program vzerog_ex2 ./ #include <math.h> #include <stdio.h> #include "SpiceUsr.h" int main( ) { /. Local variables. ./ SpiceDouble q [4]; SpiceDouble m [3][3]; SpiceDouble s; SpiceInt i; /. Define a unit quaternion. ./ s = sqrt( 2.0 ) / 2.0; q[0] = s; q[1] = 0.0; q[2] = 0.0; q[3] = -s; printf( "Quaternion : %11.7f %11.7f %11.7f %11.7f\n", q[0], q[1], q[2], q[3] ); /. Confirm that it is non-zero and ./ if ( vzerog_c ( q, 4 ) ) { printf( " Quaternion is the zero vector.\n" ); } else { /. Confirm q satisfies ||q|| = 1. ./ printf( "Norm : %11.7f\n", vnormg_c ( q, 4 ) ); /. Convert the quaternion to a matrix form. ./ q2m_c ( q, m ); printf( "Matrix form:\n" ); for ( i = 0; i < 3; i++ ) { printf( "%12.7f %11.7f %11.7f\n", m[i][0], m[i][1], m[i][2] ); } } return ( 0 ); } When this program was executed on a Mac/Intel/cc/64-bit platform, the output was: Quaternion : 0.7071068 0.0000000 0.0000000 -0.7071068 Norm : 1.0000000 Matrix form: 0.0000000 1.0000000 0.0000000 -1.0000000 0.0000000 -0.0000000 -0.0000000 0.0000000 1.0000000 RestrictionsNone. Literature_ReferencesNone. Author_and_InstitutionN.J. Bachman (JPL) J. Diaz del Rio (ODC Space) I.M. Underwood (JPL) E.D. Wright (JPL) Version-CSPICE Version 1.0.1, 05-AUG-2021 (JDR) Edited the header to comply with NAIF standard. Added complete code example based on existing example. -CSPICE Version 1.0.0, 29-JUN-1999 (EDW) (NJB) (IMU) Index_Entriestest whether an n-dimensional vector is the zero vector |
Fri Dec 31 18:41:15 2021